For every symmetric operator acting in a Hilbert space, we introduce the families of p-analytic and p-quasi-analytic vectors (p>0), indexed by positive numbers. We prove various properties of these families. We make use of these families to show that certain results guaranteeing essential selfadjointness of an operator with sufficiently large sets of quasi-analytic and Stieltjes vectors are optimal.
@article{bwmeta1.element.bwnjournal-article-smv127i3p233bwm, author = {Jan Rusinek}, title = {p-Analytic and p-quasi-analytic vectors}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {233-250}, zbl = {0888.40001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i3p233bwm} }
Rusinek, Jan. p-Analytic and p-quasi-analytic vectors. Studia Mathematica, Tome 129 (1998) pp. 233-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i3p233bwm/
[00000] [Ch1] P. R. Chernoff, Some remarks on quasi-analytic vectors, Trans. Amer. Math. Soc. 167 (1972), 105-113. | Zbl 0259.47025
[00001] [Ch2] P. R. Chernoff, Quasi-analytic vectors and quasi-analytic functions, Bull. Amer. Math. Soc. 81 (1975), 637-646. | Zbl 0304.47032
[00002] [CoI] G. Constantin and V. I. Istrăţescu, On quasi-analytic vectors for some classes of operators, Portugal. Math. 42 (1983/84), 219-224. | Zbl 0564.47001
[00003] [Ci] I. Ciorănescu, On quasi-analytic vectors for some classes of operators, in: Proceeding of the Fourth Conference on Operator Theory (Timişoara, 1979), Tipografia Universităţii, 1980, 214-226.
[00004] [E] A. El Koutri, Vecteurs α-quasi analytiques et semi-groupes analytiques, C. R. Acad. Sci. Paris Sér. I 309 (1989), 767-769. | Zbl 0691.47038
[00005] [I] V. I. Istrăţescu, Introduction to Linear Operator Theory, Marcel Dekker, New York, 1981. | Zbl 0457.47001
[00006] [K] K. Kuratowski, Introduction to Calculus, Pergamon Press, Oxford, 1969. | Zbl 0176.00501
[00007] [MM] D. Masson and W. K. McClary, Classes of vectors and essential self-adjointness, J. Funct. Anal. 10 (1972), 19-32. | Zbl 0234.47026
[00008] [N] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. | Zbl 0091.10704
[00009] [Nu1] A. E. Nussbaum, Quasi-analytic vectors, Ark. Mat. 6 (1965), 179-191. | Zbl 0182.46102
[00010] [Nu2] A. E. Nussbaum, A note on quasi-analytic vectors, Studia Math. 33 (1969), 305-309. | Zbl 0189.43903
[00011] [S] B. Simon, The theory of semi-analytic vectors. A new proof of a theorem of Masson and McClary, Indiana Univ. Math. J. 20 (1970/71), 1145-1151. | Zbl 0244.47022