We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space and discuss conditions under which the Poisson kernel is asymptotically multiplicative.
@article{bwmeta1.element.bwnjournal-article-smv127i3p201bwm, author = {P. Gorkin and D. Zheng}, title = {Harmonic extensions and the B\"ottcher-Silbermann conjecture}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {201-222}, zbl = {0896.46035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i3p201bwm} }
Gorkin, P.; Zheng, D. Harmonic extensions and the Böttcher-Silbermann conjecture. Studia Mathematica, Tome 129 (1998) pp. 201-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i3p201bwm/
[00000] [1] S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285-309. | Zbl 0396.47017
[00001] [2] S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, ibid. 14 (1991), 1-12. | Zbl 0733.47027
[00002] [3] S. Axler and P. Gorkin, Divisibility in Douglas algebras, Michigan Math. J. 31 (1984), 89-94. | Zbl 0597.46054
[00003] [4] S. Axler and P. Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723. | Zbl 0706.46040
[00004] [5] S. Axler and D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), 113-136. | Zbl 0915.47022
[00005] [6] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-Verlag, 1989, and Springer, 1990. | Zbl 0689.45009
[00006] [7] A. Böttcher and B. Silbermann, Axler-Chang-Sarason-Volberg Theorems for harmonic approximation and stable convergence, in: Linear and Complex Analysis Problem Book 3, Part I, V. P. Havin and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1573, Springer, 1994, 340-341.
[00007] [8] P. Budde, Support sets and Gleason parts of , thesis, Univ. of California, Berkeley, 1982.
[00008] [9] S.-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89. | Zbl 0332.46035
[00009] [10] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. | Zbl 0247.47001
[00010] [11] R. G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, Regional Conf. Ser. in Math. 15, Amer. Math. Soc., 1972.
[00011] [12] T. W. Gamelin, Uniform Algebras, 2nd ed., Chelsea, 1984.
[00012] [13] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl 0469.30024
[00013] [14] P. Gorkin, Decompositions of the maximal ideal space of , doctoral dissertation, Michigan State Univ., 1982.
[00014] [15] P. Gorkin, Hankel type operators, Bourgain algebras, and uniform algebras, preprint. | Zbl 1128.47307
[00015] [16] P. Gorkin and K. Izuchi, Some counterexamples in subalgebras of , Indiana Univ. Math. J. 40 (1991), 1301-1313.
[00016] [17] P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38 (1991), 147-160. | Zbl 0781.46037
[00017] [18] P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, preprint.
[00018] [19] C. Guillory and K. Izuchi, Interpolating Blaschke products of type G, Complex Variables Theory Appl. 31 (1996), 51-64.
[00019] [20] C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), 1-7. | Zbl 0559.46022
[00020] [21] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317. | Zbl 0107.33102
[00021] [22] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. | Zbl 0192.48302
[00022] [23] G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman & Co. Glenview, IL, 1970. | Zbl 0219.46037
[00023] [24] D. E. Marshall, Subalgebras of containing , Acta Math. 137 (1976), 91-98.
[00024] [25] R. Mortini and V. Tolokonnikov, Blaschke products of Sundberg-Wolff type, Complex Variables Theory Appl. 30 (1996), 373-384. | Zbl 0885.46046
[00025] [26] N. K. Nikol'skiĭ, Treatise on the Shift Operator, Springer, New York, 1985.
[00026] [27] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299. | Zbl 0257.46079
[00027] [28] D. Sarason, Algebras between and , in: Spaces of Analytic Functions, Lecture Notes in Math. 512, Springer, 1976, 117-129.
[00028] [29] C. Sundberg and T. Wolff, Interpolating sequences for , Trans. Amer. Math. Soc. 276 (1983), 551-581. | Zbl 0536.30025
[00029] [30] A. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang, and D. Sarason, J. Operator Theory 8 (1982), 209-218. | Zbl 0489.47015
[00030] [31] R. Younis and D. Zheng, Algebras generated by bounded analytic and harmonic functions and applications, preprint.
[00031] [32] D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), 477-501. | Zbl 0865.47019