For each natural number N, we give an example of a Banach space X such that the set of norm attaining N-linear forms is dense in the space of all continuous N-linear forms on X, but there are continuous (N+1)-linear forms on X which cannot be approximated by norm attaining (N+1)-linear forms. Actually,X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous result for homogeneous polynomials.
@article{bwmeta1.element.bwnjournal-article-smv127i2p99bwm, author = {M. Jimen\'ez Sevilla and Rafael Pay\'a}, title = {Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {99-112}, zbl = {0909.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p99bwm} }
Jimenéz Sevilla, M.; Payá, Rafael. Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces. Studia Mathematica, Tome 129 (1998) pp. 99-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p99bwm/
[00000] [1] M. D. Acosta, F. J. Aguirre and R. Payá, There is no bilinear Bishop-Phelps Theorem, Israel J. Math. 93 (1996), 221-227. | Zbl 0852.46010
[00001] [2] M. D. Acosta, F. J. Aguirre and R. Payá, A space by W. Gowers and new results on norm and numerical radius attaining operators, Acta Univ. Carolin. Math. Phys. 33 (1992), 5-14. | Zbl 0786.47002
[00002] [3] F. J. Aguirre, Algunos problemas de optimización en dimensión infinita: aplicaciones lineales y multilineales que alcanzan su norma, Tesis Doctoral, Universidad de Granada, 1995.
[00003] [4] Z. Altshuler, P. G. Casazza and B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 140-155. | Zbl 0264.46011
[00004] [5] R. Aron, C. Finet and E. Werner, Some remarks on norm attaining N-linear forms, in: Function Spaces, K. Jarosz (ed.), Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, New York, 1995, 19-28. | Zbl 0851.46008
[00005] [6] E. R. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98. | Zbl 0098.07905
[00006] [7] P. G. Casazza and B.-L. Lin, On symmetric sequences in Lorentz sequence spaces II, Israel J. Math. 17 (1974), 191-218. | Zbl 0286.46019
[00007] [8] Y. S. Choi, Norm attaining bilinear forms on , J. Math. Anal. Appl., to appear. | Zbl 0888.46007
[00008] [9] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135-147. | Zbl 0858.47005
[00009] [10] V. Dimant and S. Dineen, Banach subspaces of spaces of holomorphic functions and related topics, preprint. | Zbl 0935.46048
[00010] [11] V. Dimant and I. Zalduendo, Bases in spaces of multilinear forms over Banach spaces, J. Math. Anal. Appl. 200 (1996), 548-566. | Zbl 0867.46006
[00011] [12] D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. 16 (1966), 85-106. | Zbl 0136.10701
[00012] [13] R. Gonzalo and J. A. Jaramillo, Compact polynomials between Banach spaces, Extracta Math. 8 (1993), 42-48. | Zbl 1016.46503
[00013] [14] W. T. Gowers, Symmetric block bases of sequences with large average growth, Israel J. Math. 69 (1990), 129-151. | Zbl 0721.46010
[00014] [15] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. | Zbl 0789.46011
[00015] [16] H. Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math. (Basel) 59 (1992), 562-565. | Zbl 0735.46009
[00016] [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, 1977. | Zbl 0362.46013
[00017] [18] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979. | Zbl 0403.46022
[00018] [19] S. Reisner, A factorization theorem in Banach lattices and its applications to Lorentz spaces, Ann. Inst. Fourier (Grenoble) 31 (1) (1981), 239-255. | Zbl 0437.46025
[00019] [20] W. L. C. Sargent, Some sequence spaces related to the spaces, J. London Math. Soc. 35 (1960), 161-171. | Zbl 0090.03703
[00020] [21] A. E. Tong, Diagonal submatrices of matrix maps, Pacific J. Math. 32 (1970), 551-559. | Zbl 0194.06103