We prove that there exist constants C>0 and 0 < λ < 1 so that for all convex bodies K in with non-empty interior and all integers k so that 1 ≤ k ≤ λn/ln(n+1), there exists a k-dimensional affine subspace Y of satisfying . This formulation of Dvoretzky’s theorem for large dimensional sections is a generalization with a new proof of the result due to Milman and Schechtman for centrally symmetric convex bodies. A sharper estimate holds for the n-dimensional simplex.
@article{bwmeta1.element.bwnjournal-article-smv127i2p191bwm, author = {Y. Gordon and O. Gu\'edon and M. Meyer}, title = {An isomorphic Dvoretzky's theorem for convex bodies}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {191-200}, zbl = {0929.46019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p191bwm} }
Gordon, Y.; Guédon, O.; Meyer, M. An isomorphic Dvoretzky's theorem for convex bodies. Studia Mathematica, Tome 129 (1998) pp. 191-200. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p191bwm/
[00000] [BM] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in , Invent. Math. 88 (1987), 319-340. | Zbl 0617.52006
[00001] [DR] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197. | Zbl 0036.36303
[00002] [Go1] Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), 265-289. | Zbl 0663.60034
[00003] [Go2] Y. Gordon, Majorization of gaussian processes and geometric applications, Probab. Theory Related Fields 91 (1992), 251-267. | Zbl 0744.60039
[00004] [Go-M-P] Y. Gordon, M. Meyer and A. Pajor, Ratios of volumes and factorization through , Illinois J. Math. 40 (1996), 91-107. | Zbl 0843.46008
[00005] [Gué] O. Guédon, Gaussian version of a theorem of Milman and Schechtman, Positivity 1 (1997), 1-5. | Zbl 0912.46008
[00006] [M-S1] V. D. Milman and G. Schechtman, An "isomorphic" version of Dvoretzky's theorem, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 541-544. | Zbl 0836.46007
[00007] [M-S2] V. D. Milman and G. Schechtman, An "isomorphic" version of Dvoretzky's theorem II, Math. Sci. Res. Inst. Publ., to appear. | Zbl 0942.46012
[00008] [R1] M. Rudelson, Contact points of convex bodies, Israel J. Math., to appear. | Zbl 0896.52008
[00009] [R2] M. Rudelson, Random vectors in the isotropic position, preprint. | Zbl 0929.46021