The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin
Głowacki, Paweł
Studia Mathematica, Tome 129 (1998), p. 169-190 / Harvested from The Polish Digital Mathematics Library

Let A be a pseudodifferential operator on N whose Weyl symbol a is a strictly positive smooth function on W=N×N such that |αa|Cαa1-ϱ for some ϱ>0 and all |α|>0, αa is bounded for large |α|, and limwa(w)=. Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216465
@article{bwmeta1.element.bwnjournal-article-smv127i2p169bwm,
     author = {Pawe\l\ G\l owacki},
     title = {The Weyl asymptotic formula by the method of Tulovski\u\i\ and Shubin},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {169-190},
     zbl = {0905.47040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p169bwm}
}
Głowacki, Paweł. The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin. Studia Mathematica, Tome 129 (1998) pp. 169-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p169bwm/

[00000] [1] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin, 1975. | Zbl 0308.31001

[00001] [2] W. Czaja and Z. Rzeszotnik, Two remarks on spectral asymptotics for pseudodifferential operators, to appear.

[00002] [3] G. B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, N.J., 1989. | Zbl 0682.43001

[00003] [4] P. Głowacki, Stable semigroups of measures on the Heisenberg group, Studia Math. 89 (1984), 105-138. | Zbl 0563.43002

[00004] [5] L. Hörmander, On the asymptotic distribution of the eigenvalues of pseudodifferential operators in n, Ark. Mat. 17 (1979), 297-313. | Zbl 0436.35064

[00005] [6] L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math 32 (1979), 359-443. | Zbl 0388.47032

[00006] [7] L. Hörmander, The Analysis of Linear Partial Differential Operators II, Springer, Berlin, 1983. | Zbl 0521.35002

[00007] [8] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, Berlin, 1983. | Zbl 0521.35002

[00008] [9] R. Howe, Quantum mechanics and partial differential operators, J. Funct. Anal. 38 (1980), 188-254. | Zbl 0449.35002

[00009] [10] D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math. 418 (1991), 77-129. | Zbl 0721.22004

[00010] [11] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975. | Zbl 0308.47002

[00011] [12] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, Berlin, 1987.

[00012] [13] V. N. Tulovskiĭ and M. A. Shubin, On the asymptotic distribution of the eigenvalues of pseudodifferential operators in n, Math. USSR-Sb. 21 (1973), 565-583. | Zbl 0295.35068