Associated weights and spaces of holomorphic functions
Bierstedt, Klaus ; Bonet, José ; Taskinen, Jari
Studia Mathematica, Tome 129 (1998), p. 137-168 / Harvested from The Polish Digital Mathematics Library

When treating spaces of holomorphic functions with growth conditions, one is led to introduce associated weights. In our main theorem we characterize, in terms of the sequence of associated weights, several properties of weighted (LB)-spaces of holomorphic functions on an open subset GN which play an important role in the projective description problem. A number of relevant examples are provided, and a “new projective description problem” is posed. The proof of our main result can also serve to characterize when the embedding of two weighted Banach spaces of holomorphic functions is compact. Our investigations on conditions when an associated weight coincides with the original one and our estimates of the associated weights in several cases (mainly for G = ℂ or D) should be of independent interest.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216464
@article{bwmeta1.element.bwnjournal-article-smv127i2p137bwm,
     author = {Klaus Bierstedt and Jos\'e Bonet and Jari Taskinen},
     title = {Associated weights and spaces of holomorphic functions},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {137-168},
     zbl = {0934.46027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p137bwm}
}
Bierstedt, Klaus; Bonet, José; Taskinen, Jari. Associated weights and spaces of holomorphic functions. Studia Mathematica, Tome 129 (1998) pp. 137-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p137bwm/

[00000] [1] A. V. Abanin, Criteria for weak sufficiency, Math. Notes 40 (1986), 757-764. | Zbl 0625.46030

[00001] [2] J. M. Anderson and J. Duncan, Duals of Banach spaces of entire functions, Glasgow Math. J. 32 (1990), 215-220. | Zbl 0769.46011

[00002] [3] F. Bastin and J. Bonet, Locally bounded noncontinuous linear forms on strong duals of nondistinguished Köthe echelon spaces, Proc. Amer. Math. Soc. 108 (1990), 769-774. | Zbl 0724.46006

[00003] [4] C. A. Berenstein and F. Gay, Complex Variables, An Introduction, Grad. Texts in Math. 125, Springer, 1991.

[00004] [5] K. D. Bierstedt, An introduction to locally convex inductive limits, in: Functional Analysis and its Applications (Proc. CIMPA Autumn School, Nice, 1986), World Scientific, 1988, 35-133. | Zbl 0786.46001

[00005] [6] K. D. Bierstedt and J. Bonet, Some recent results on VC(X), in: Advances in the Theory of Fréchet Spaces (Istanbul, 1988), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 181-194.

[00006] [7] K. D. Bierstedt and J. Bonet, Projective descriptions of weighted inductive limits: The vector-valued cases, ibid., 195-221. | Zbl 0708.46037

[00007] [8] K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271-297. | Zbl 0803.46023

[00008] [9] K. D. Bierstedt and R. Meise, Weighted inductive limits and their projective descriptions, Proc. Silivri Conference in Functional Analysis 1985, Doğa Tr. J. Math. 10 (1986), 54-82. | Zbl 0970.46541

[00009] [10] K. D. Bierstedt and R. Meise, Distinguished echelon spaces and the projective description of weighted inductive limits of type VdC(X), in: Aspects of Mathematics and its Applications, North-Holland Math. Library 34, North-Holland, 1986, 169-226.

[00010] [11] K. D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. | Zbl 0599.46026

[00011] [12] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79. | Zbl 0801.46021

[00012] [13] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A, to appear. | Zbl 0912.47014

[00013] [14] J. Bonet and S. N. Melikhov, Interpolation of entire functions and projective descriptions, J. Math. Anal. Appl. 205 (1997), 454-460. | Zbl 0992.46002

[00014] [15] J. Bonet and J. Taskinen, The subspace problem for weighted inductive limits of spaces of holomorphic functions, Michigan Math. J. 42 (1995), 255-268. | Zbl 0841.46014

[00015] [16] R. W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237. | Zbl 0735.46022

[00016] [17] J. Clunie and T. Kővári, On integral functions having prescribed asymptotic growth II, Canad. J. Math. 20 (1968), 7-20. | Zbl 0164.08602

[00017] [18] P. Erdős and T. Kővári, On the maximum modulus of entire functions, Acta Math. Acad. Sci. Hungar. 7 (1957), 305-317. | Zbl 0072.07401

[00018] [19] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Math. Library 7, North-Holland, 1973.

[00019] [20] L. Hörmander, The Analysis of Linear Partial Differential Operators II, Grundlehren Math. Wiss. 257, Springer, 1983. | Zbl 0521.35002

[00020] [21] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320. | Zbl 0823.46025

[00021] [22] P. Mattila, E. Saksman and J. Taskinen, Weighted spaces of harmonic and holomorphic functions: Sequence space representations and projective descriptions, Proc. Edinburgh Math. Soc. 40 (1997), 41-62. | Zbl 0898.46022

[00022] [23] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, 1987. | Zbl 0614.46001

[00023] [24] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1970.

[00024] [25] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279. | Zbl 0367.46053

[00025] [26] A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the unit disk, Michigan Math. J. 29 (1982), 3-25. | Zbl 0508.31001