This paper studies the boundary behavior of the Berezin transform on the C*-algebra generated by the analytic Toeplitz operators on the Bergman space.
@article{bwmeta1.element.bwnjournal-article-smv127i2p113bwm, author = {Sheldon Axler and Dechao Zheng}, title = {The Berezin transform on the Toeplitz algebra}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {113-136}, zbl = {0915.47022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p113bwm} }
Axler, Sheldon; Zheng, Dechao. The Berezin transform on the Toeplitz algebra. Studia Mathematica, Tome 129 (1998) pp. 113-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i2p113bwm/
[00000] [1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), 380-397. | Zbl 0771.32006
[00001] [2] S. Axler, Bergman spaces and their operators, in: Surveys of Some Recent Results in Operator Theory, Vol. 1, J. B. Conway and B. B. Morrel (eds.), Pitman Res. Notes Math., 1988, 1-50.
[00002] [3] S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), 1-12. | Zbl 0733.47027
[00003] [4] S. Axler and P. Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723. | Zbl 0706.46040
[00004] [5] S. Axler and A. Shields, Extensions of analytic and harmonic functions, Pacific J. Math. 145 (1990), 1-15. | Zbl 0732.30026
[00005] [6] S. Axler and D. C. Zheng, Compact operators via the Berezin transform, preprint. | Zbl 0914.47029
[00006] [7] M. Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), 233-254. | Zbl 0807.47017
[00007] [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981. | Zbl 0469.30024
[00008] [9] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. | Zbl 0192.48302
[00009] [10] S. Kiliç, The Berezin symbol and multipliers of functional Hilbert spaces, Proc. Amer. Math. Soc. 123 (1995), 3687-3691. | Zbl 0847.46010
[00010] [11] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611. | Zbl 0439.47022
[00011] [12] K. Stroethoff, Compact Toeplitz operators on Bergman spaces, preprint.
[00012] [13] C. Sundberg, Exact sequences for generalized Toeplitz operators, Proc. Amer. Math. Soc. 101 (1987), 634-636. | Zbl 0642.47012
[00013] [14] D. C. Zheng, Hankel operators and Toeplitz operators on the Bergman space, J. Funct. Anal. 83 (1989), 98-120. | Zbl 0678.47026