The constructive definition of the Weierstrass integral through only one limit process over finite sums is often preferable to the more sophisticated definition of the Serrin integral, especially for approximation purposes. By proving that the Weierstrass integral over a BV curve is a length functional with respect to a suitable metric, we discover a further natural reason for studying the Weierstrass integral. This characterization was conjectured by Menger.
@article{bwmeta1.element.bwnjournal-article-smv127i1p9bwm, author = {Loris Faina}, title = {The parametric Weierstrass integral over a BV curve as a length functional}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {9-19}, zbl = {0906.49020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i1p9bwm} }
Faina, Loris. The parametric Weierstrass integral over a BV curve as a length functional. Studia Mathematica, Tome 129 (1998) pp. 9-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i1p9bwm/
[00000] [1] M. Boni, Variazione generalizzata con peso e quasi additività, Atti Sem. Mat. Fis. Univ. Modena 25 (1976), 195-210. | Zbl 0407.26003
[00001] [2] M. Boni and P. Brandi, Variazione, classica e generalizzata, con peso, ibid. 23 (1974), 1-22. | Zbl 0331.49006
[00002] [3] P. Brandi and A. Salvadori, Sull'integrale debole alla Burkill-Cesari, ibid. 27, (1978), 14-38.
[00003] [4] P. Brandi and A. Salvadori, Martingale ed integrale alla Burkill-Cesari, Rend. Accad. Naz. Lincei 67 (1979), 197-203.
[00004] [5] P. Brandi and A. Salvadori, Sull'area generalizzata, Atti Sem. Mat. Fis. Univ. Modena 24 (1979), 33-62. | Zbl 0444.49037
[00005] [6] P. Brandi and A. Salvadori, Un teorema di rappresentazione per l'integrale parametrico del Calcolo delle Variazioni alla Weierstrass, Ann. Mat. Pura Appl. 124 (1980), 39-58.
[00006] [7] P. Brandi and A. Salvadori, Sull'estensione dell'integrale debole alla Burkill-Cesari ad una misura, Rend. Circ. Mat. Palermo 30 (1981), 207-234. | Zbl 0477.49029
[00007] [8] P. Brandi and A. Salvadori, Existence, semicontinuity and representation for the integrals of the Calculus of Variations. The BV case, in: Atti Convegno Celebrativo I Centenario Circolo Matematico di Palermo, 1984, 447-462. | Zbl 0613.49030
[00008] [9] P. Brandi and A. Salvadori, The nonparametric integral of the Calculus of Variations as a Weierstrass integral: Existence and representation, J. Math. Anal. Appl. 107 (1985), 67-95. | Zbl 0582.49031
[00009] [10] P. Brandi and A. Salvadori, L'integrale del Calcolo delle Variazioni alla Weierstrass lungo curve BV e confronto con i funzionali integrali di Lebesgue e Serrin, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 319-325.
[00010] [11] P. Brandi and A. Salvadori, On the lower semicontinuity of certain integrals of the Calculus of Variations, J. Math. Anal. Appl. 144 (1989), 183-205. | Zbl 0706.49011
[00011] [12] P. Brandi and A. Salvadori, A quasi-additivity type condition and the integral over a BV variety, Pacific J. Math. 146 (1990), 1-19. | Zbl 0759.49010
[00012] [13] P. Brandi and A. Salvadori, On the definition and properties of a variational integral over a BV curve, to appear. | Zbl 0735.49040
[00013] [14] J. C. Breckenridge, Burkill-Cesari integrals of quasi additive interval functions, Pacific J. Math. 37 (1971), 635-654. | Zbl 0226.28011
[00014] [15] L. Cesari, Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa 5 (1936), 299-312. | Zbl 0014.29605
[00015] [16] L. Cesari, Quasi additive set functions and the concept of integral over a variety, Trans. Amer. Math. Soc. 102 (1962), 94-113. | Zbl 0115.26902
[00016] [17] L. Cesari, Extension problem for quasi additive set functions and Radon-Nikodym derivatives, ibid., 114-146. | Zbl 0115.27001
[00017] [18] K. Menger, Géométrie Générale, Mémorial Sci. Math. 124, Gauthier-Villars, Paris, 1954.
[00018] [19] A. Salvadori, Sulla convergenza in lunghezza in senso generalizzato con peso per una successione di curve parametriche, Rend. Circ. Mat. Palermo 26 (1977), 195-228. | Zbl 0435.28006
[00019] [20] G. Warner, The generalized Weierstrass-type integral ∫f(ξ,ϕ), Ann. Scuola Norm. Sup. Pisa 22 (1968), 163-192.
[00020] [21] G. Warner, The Burkill-Cesari integral, Duke Math. J. 35 (1968), 61-78. | Zbl 0165.06702