We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.
@article{bwmeta1.element.bwnjournal-article-smv127i1p21bwm, author = {Carlos Ben\'\i tez and Krzysztof Przes\l awski and David Yost}, title = {A universal modulus for normed spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {21-46}, zbl = {0909.46008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i1p21bwm} }
Benítez, Carlos; Przesławski, Krzysztof; Yost, David. A universal modulus for normed spaces. Studia Mathematica, Tome 129 (1998) pp. 21-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i1p21bwm/
[00000] [1] J. Alonso and C. Benítez, Some characteristic and non-characteristic properties of inner product spaces, J. Approx. Theory 55 (1988), 318-323. | Zbl 0675.41047
[00001] [2] J. Alonso and A. Ullán, Moduli in normed linear spaces and characterization of inner product spaces, Arch. Math. (Basel) 59 (1992), 487-495. | Zbl 0760.46014
[00002] [3] D. Amir, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986. | Zbl 0617.46030
[00003] [4] C. Benítez and M. del Río, Characterization of inner product spaces through rectangle and square inequalities, Rev. Roumaine Math. Pures Appl. 29 (1984), 543-546. | Zbl 0556.46013
[00004] [5] C. Benítez and Y. Sarantopoulos, Characterization of real inner product spaces by means of symmetric bilinear forms, J. Math. Anal. Appl. 180 (1993), 207-220. | Zbl 0791.46015
[00005] [6] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172. | Zbl 0012.30604
[00006] [7] F. Cabello Sánchez and J. M. F. Castillo, Isometries of finite dimensional normed spaces, Extracta Math. 10 (1995), 146-151.
[00007] [8] M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315-319. | Zbl 0034.25301
[00008] [9] M. M. Day, Some characterizations of inner-product spaces, ibid., 320-337. | Zbl 0034.21703
[00009] [10] M. del Río and C. Benítez, The rectangular constant for two-dimensional normed spaces, J. Approx. Theory 19 (1977), 15-21. | Zbl 0343.46018
[00010] [11] J. Gao and K. S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), 41-56. | Zbl 0757.46023
[00011] [12] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990. | Zbl 0708.47031
[00012] [13] V. I. Gurariĭ, On differential properties of the modulus of convexity of Banach spaces, Mat. Issled. 2 (1967), 141-148 (in Russian).
[00013] [14] R. E. Harrell and L. A. Karlovitz, Girths and flat Banach spaces, Bull. Amer. Math. Soc. 76 (1970) 1288-1291. | Zbl 0212.14303
[00014] [15] J.-B. Hiriart-Urruty, A short proof of the variational principle for approximate solutions of a minimization problem, Amer. Math. Monthly 90 (1983), 206-207.
[00015] [16] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
[00016] [17] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 540-550. | Zbl 0132.08902
[00017] [18] J. Joly, Caractérisations d'espaces hilbertiens au moyen de la constante rectangle, J. Approx. Theory 2 (1969), 301-311. | Zbl 0177.40701
[00018] [19] M. I. Kadets, Proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Functional Anal. Appl. 1 (1967), 53-62 (= Funktsional. Anal. i Prilozhen. 1 (1967), 61-70).
[00019] [20] M. A. Khamsi, Étude de la propriété du point fixe dans les espaces de Banach et les espaces métriques, thesis, Univ. Paris VI, 1987.
[00020] [21] V. I. Liokumovich, Existence of B-spaces with a non-convex modulus of convexity, Izv. Vyssh. Uchebn. Zaved. Mat. 12 (1973), 43-49 (in Russian). | Zbl 0274.46014
[00021] [22] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986. | Zbl 0606.46013
[00022] [23] S. Prus, A remark on a theorem of Turett, Bull. Polish Acad. Sci. Math. 36 (1988), 225-227. | Zbl 0767.46009
[00023] [24] K. Przesławski and D. Yost, Lipschitz retracts, selectors and extensions, Michigan Math. J. 42 (1995), 555-571. | Zbl 0920.54019
[00024] [25] S. Rolewicz, On drop property, Studia Math. 85 (1986), 27-35. | Zbl 0642.46011
[00025] [26] J. J. Schäffer, Inner diameter, perimeter, and girth of spheres, Math. Ann. 173 (1967), 59-79 and 79-82. | Zbl 0152.12405
[00026] [27] B. Sims, unpublished seminar notes, Kent State Univ., Kent, Ohio, 1986.
[00027] [28] C. Zanco and A. Zucchi, Moduli of rotundity and smoothness for convex bodies, Boll. Un. Mat. Ital. B (7) 7 (1993), 833-855. | Zbl 0804.52001