The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.
@article{bwmeta1.element.bwnjournal-article-smv127i1p1bwm, author = {J\"org Krone and Volker Walldorf}, title = {Complemented subspaces with a strong finite-dimensional decomposition of nuclear K\"othe spaces have a basis}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {1-7}, zbl = {0911.46005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i1p1bwm} }
Krone, Jörg; Walldorf, Volker. Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis. Studia Mathematica, Tome 129 (1998) pp. 1-7. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i1p1bwm/
[00000] [1] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318. | Zbl 0182.45301
[00001] [2] P. B. Djakov and E. Dubinsky, Complemented block subspaces of Köthe spaces, Serdica 14 (1988), 278-282.
[00002] [3] P. B. Djakov and B. S. Mityagin, Modified construction of a nuclear Fréchet space without basis, J. Funct. Anal. 23 (1976), 415-423.
[00003] [4] E. Dubinsky, Subspaces without basis in nuclear Fréchet spaces, J. Funct. Anal. 26 (1977), 121-130. | Zbl 0444.46005
[00004] [5] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin, 1979. | Zbl 0403.46005
[00005] [6] E. Dubinsky and B. S. Mityagin, Quotient spaces without basis in nuclear Fréchet spaces, Canad. J. Math. 30 (1978), 1296-1305. | Zbl 0399.46003
[00006] [7] G. Köthe, Topologische lineare Räume, Springer, 1960. | Zbl 0093.11901
[00007] [8] J. Krone, On Pełczyński's problem, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 297-304. | Zbl 0804.46005
[00008] [9] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.
[00009] [10] A. Pełczyński, Problem 37, Studia Math. 38 (1970), 476.
[00010] [11] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. 66, Springer, 1972.
[00011] [12] M. J. Wagner, Some new methods in the structure theory of nuclear Fréchet spaces, in: Advances in the Theory of Fréchet spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 333-354.