On non-primary Fréchet Schwartz spaces
Díaz, J.
Studia Mathematica, Tome 122 (1997), p. 291-307 / Harvested from The Polish Digital Mathematics Library

Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions of bounded type b(U), where U is a Banach space or a bounded absolutely convex open set in a Banach space.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216456
@article{bwmeta1.element.bwnjournal-article-smv126i3p291bwm,
     author = {J. D\'\i az},
     title = {On non-primary Fr\'echet Schwartz spaces},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {291-307},
     zbl = {0896.46001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i3p291bwm}
}
Díaz, J. On non-primary Fréchet Schwartz spaces. Studia Mathematica, Tome 122 (1997) pp. 291-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i3p291bwm/

[00000] [1] A. Albanese, Primary products of Banach spaces, Arch. Math. (Basel) 66 (1996), 397-405. | Zbl 0859.46003

[00001] [2] A. Albanese, Montel subspaces in Fréchet spaces of Moscatelli type, Glasgow Math. J., to appear.

[00002] [3] A. Albanese and V. B. Moscatelli, The spaces (p)q(q), 1 ≤ p < q ≤ ∞ are primary, preprint.

[00003] [4] A. Albanese and V. B. Moscatelli, Complemented subspaces of sums and products of copies of L1[0,1], Rev. Mat. Univ. Complut. Madrid 9 (1996), 275-287. | Zbl 0885.46026

[00004] [5] A. Benndorf, On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces, Studia Math. 75 (1983), 103-119. | Zbl 0541.46002

[00005] [6] C. Bessaga, Geometrical methods of the theory of Fréchet spaces, in: Functional Analysis and its Applications, H. Hogbe-Nlend (ed.), World Sci., Singapore, 1988, 1-34.

[00006] [7] K. D. Bierstedt, R. G. Meise and N. H. Summers, Köthe sets and Köthe sequence spaces, in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Stud. 71, North-Holland, Amsterdam, 1982, 27-91. | Zbl 0504.46007

[00007] [8] J. Bonet and J. C. Díaz, On the weak quasinormability condition of Grothendieck, Tr. J. Math. 15 (1991), 154-164. | Zbl 0970.46527

[00008] [9] J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complut. Madrid 2 (1989), 77-92. | Zbl 0757.46001

[00009] [10] J. M. F. Castillo, J. C. Díaz and J. Motos, On the Fréchet space Lp-, preprint.

[00010] [11] J. C. Díaz, Primariness of some universal Fréchet spaces, in: Functional Analysis, S. Dierolf, S. Dineen and P. Domański (eds.), de Gruyter, Berlin, 1996, 95-103. | Zbl 0905.46002

[00011] [12] J. C. Díaz and M. A. Miñarro, Universal Köthe sequence spaces, Monatsh. Math., to appear.

[00012] [13] J. C. Díaz and S. Dineen, Polynomials on stable spaces, Ark. Mat., to appear. | Zbl 0929.46036

[00013] [14] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. | Zbl 0484.46044

[00014] [15] S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat. 13 (1993), 155-195. | Zbl 0838.46036

[00015] [16] P. B. Djakov, M. Yurdakul and V. P. Zahariuta, Isomorphic classification of cartesian products of power series spaces, Michigan Math. J. 43 (1996), 221-229. | Zbl 0890.46008

[00016] [17] P. B. Djakov and V. P. Zahariuta, On Dragilev type power Köthe spaces, Studia Math. 120 (1996), 219-234. | Zbl 0864.46003

[00017] [18] P. Domański and A. Ortyński, Complemented subspaces of products of Banach spaces, Trans. Amer. Math. Soc. 316 (1989), 215-231. | Zbl 0693.46017

[00018] [19] P. Galindo, M. Maestre and P. Rueda, Biduality in spaces of holomorphic functions, preprint. | Zbl 0968.46026

[00019] [20] J. M. Isidro, Quasinormability of some spaces of holomorphic mappings, Rev. Mat. Univ. Complut. Madrid 3 (1990), 13-17. | Zbl 0709.46017

[00020] [21] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001

[00021] [22] G. Köthe, Topological Vector Spaces, I, Springer, New York, 1969. | Zbl 0179.17001

[00022] [23] G. Metafune and V. B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl. 153 (1988), 175-190. | Zbl 0684.46026

[00023] [24] G. Metafune and V. B. Moscatelli, On the space p+=q>pq, Math. Nachr. 147 (1990), 47-52.

[00024] [25] A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 167-203. | Zbl 0789.46006

[00025] [26] T. Terzioğlu and D. Vogt, A Köthe space which has a continuous norm but whose bidual does not, Arch. Math. (Basel) 54 (1990), 180-183. | Zbl 0724.46008

[00026] [27] V. P. Zahariuta, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Rostov. Univ., 1979 (in Russian); revised English version: Turkish J. Math. 20 (1996), 237-289. | Zbl 0866.46005