We show how one can, in a unified way, calculate the Kottman and the packing constants of the Orlicz sequence space defined by an N-function, equipped with either the gauge or Orlicz norms. The values of these constants for a class of reflexive Orlicz sequence spaces are found, using a quantitative index of N-functions and some interpolation theorems. The exposition is essentially selfcontained.
@article{bwmeta1.element.bwnjournal-article-smv126i3p235bwm, author = {M. Rao and Z. Ren}, title = {Packing in Orlicz sequence spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {235-251}, zbl = {0911.46004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i3p235bwm} }
Rao, M.; Ren, Z. Packing in Orlicz sequence spaces. Studia Mathematica, Tome 122 (1997) pp. 235-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i3p235bwm/
[00000] [1] J. A. C. Burlak, R. A. Rankin and A. P. Robertson, The packing of spheres in the space , Proc. Glasgow Math. Assoc. 4 (1958), 22-25. | Zbl 0087.10801
[00001] [2] C. E. Cleaver, On the extension of Lipschitz-Hölder maps on Orlicz spaces, Studia Math. 42 (1972), 195-204. | Zbl 0208.15005
[00002] [3] C. E. Cleaver, Packing spheres in Orlicz spaces, Pacific J. Math. 65 (1976), 325-335. | Zbl 0315.46033
[00003] [4] T. Domínguez Benavides and R. J. Rodríguez, Some geometric coefficients in Orlicz sequence spaces, Nonlinear Anal. 20 (1993), 349-358. | Zbl 0805.46009
[00004] [5] J. Elton and E. Odell, The unit ball of every infinite dimensional normed linear space contains a (1+ε)-separated sequence, Colloq. Math. 44 (1981), 105-109. | Zbl 0493.46014
[00005] [6] H. Hudzik, Every nonreflexive Banach lattice has the packing constant equal to 1/2, Collect. Math. 44 (1993), 131-135. | Zbl 0839.46011
[00006] [7] C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576. | Zbl 0208.37503
[00007] [8] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
[00008] [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I and II, Springer, Berlin, 1977 and 1979. | Zbl 0362.46013
[00009] [10] W. Orlicz, Linear Functional Analysis, World Sci., 1992. [Original 1963.]
[00010] [11] M. M. Rao, Interpolation, ergodicity and martingales, J. Math. Mech. 16 (1966), 543-567. | Zbl 0166.11704
[00011] [12] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. | Zbl 0724.46032
[00012] [13] Z. D. Ren, Packing in Orlicz function spaces, Ph.D. Dissertation, University of California, Riverside, 1994.
[00013] [14] T. F. Wang, Packing constants of Orlicz sequence spaces, Chinese Ann. Math. Ser. A 8 (1987), 508-513 (in Chinese). | Zbl 0651.46029
[00014] [15] T. F. Wang and Y. M. Liu, Packing constant of a type of sequence spaces, Comment. Math. Prace Mat. 30 (1990), 197-203. | Zbl 0756.46008
[00015] [16] Y. N. Ye, Packing spheres in Orlicz sequence spaces, Chinese Ann. Math. Ser. A 4 (1983), 487-493 (in Chinese).
[00016] [17] Y. N. Ye and Y. H. Li, Geometric equivalence relation of reflexivity in Orlicz sequence space, Northeastern Math. J. 3 (1986), 309-323 (in Chinese). | Zbl 0641.46008