Using extrapolation spaces introduced by Da Prato-Grisvard and Nagel we prove a non-autonomous perturbation theorem for Hille-Yosida operators. The abstract result is applied to non-autonomous retarded partial differential equations.
@article{bwmeta1.element.bwnjournal-article-smv126i3p219bwm, author = {Abdelaziz Rhandi}, title = {Extrapolation methods to solve non-autonomous retarded partial differential equations}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {219-233}, zbl = {0907.47041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i3p219bwm} }
Rhandi, Abdelaziz. Extrapolation methods to solve non-autonomous retarded partial differential equations. Studia Mathematica, Tome 122 (1997) pp. 219-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i3p219bwm/
[00000] [Am] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995.
[00001] [Bu-Be] P. Butzer and H. Berens, Semigroups of Operators and Approximation, Springer, Berlin, 1967.
[00002] [Cl] P. Clément et al., One-Parameter Semigroups, CWI Monographs 5, Amsterdam, 1987.
[00003] [Cl1] P. Clément, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H. R. Thieme, Perturbation theory for dual semigroups. I. The sun-reflexive case, Math. Ann. 277 (1987), 709-725. | Zbl 0634.47039
[00004] [Cl2] P. Clément, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans and H. R. Thieme, Perturbation theory for dual semigroups. II. Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), 145-172. | Zbl 0661.47015
[00005] [DaP-G] G. Da Prato and P. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei 72 (1982), 330-332. | Zbl 0527.46055
[00006] [Da-Sch-Zh] W. Desch, W. Schappacher, and K. P. Zhang, Semilinear evolution equations, Houston J. Math. 15 (1989), 527-552. | Zbl 0712.47052
[00007] [Di-vGi-Lu-Wa] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Functional-, Complex- and Nonlinear Analysis, Springer, 1995.
[00008] [Go] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.
[00009] [Ha] J. K. Hale, Theory of Functional Differential Equations, Springer, 1977.
[00010] [Hi-Ph] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.
[00011] [Li] J. L. Lions, Théorèmes de trace et d'interpolation, I, Ann. Scuola Norm. Sup. Pisa 13 (1959), 389-403.
[00012] [Lu] A. Lunardi, Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations, Math. Nachr. 121 (1985), 295-318. | Zbl 0568.47035
[00013] [Lu1] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
[00014] [Na] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, 1986. | Zbl 0585.47030
[00015] [Na1] R. Nagel (ed.), Sobolev spaces and semigroups, Semesterbericht Funktionalanalysis Tübingen (Sommersemester 1983), 1-19.
[00016] [Na2] R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators, in: Lecture Notes in Pure and Appl. Math. 150, Marcel Dekker, 1994, 51-70.
[00017] [vNe] J. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer, 1992. | Zbl 0780.47026
[00018] [Ni-Rh] G. Nickel and A. Rhandi, On the essential spectral radius of semigroups generated by perturbations of Hille-Yosida operators, Differential Integral Equations, to appear.
[00019] [Pa] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. | Zbl 0516.47023
[00020] [Ta] H. Tanabe, Equations of Evolution, Pitman, London, 1979.
[00021] [Wa] T. Walther, Störungstheorie von Generatoren und Favard-Klassen, Dissertation, Tübingen, 1986.