On the range of convolution operators on non-quasianalytic ultradifferentiable functions
Bonet, Jóse ; Galbis, Antonio ; Meise, R.
Studia Mathematica, Tome 122 (1997), p. 171-198 / Harvested from The Polish Digital Mathematics Library

Let (ω)(Ω) denote the non-quasianalytic class of Beurling type on an open set Ω in n. For μ(ω)'(n) the surjectivity of the convolution operator Tμ:(ω)(Ω1)(ω)(Ω2) is characterized by various conditions, e.g. in terms of a convexity property of the pair (Ω1,Ω2) and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator Sμ:Dω'(Ω1)Dω'(Ω2) between ultradistributions of Roumieu type whenever μω'(n). These results extend classical work of Hörmander on convolution operators between spaces of C-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216450
@article{bwmeta1.element.bwnjournal-article-smv126i2p171bwm,
     author = {J\'ose Bonet and Antonio Galbis and R. Meise},
     title = {On the range of convolution operators on non-quasianalytic ultradifferentiable functions},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {171-198},
     zbl = {0918.46039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p171bwm}
}
Bonet, Jóse; Galbis, Antonio; Meise, R. On the range of convolution operators on non-quasianalytic ultradifferentiable functions. Studia Mathematica, Tome 122 (1997) pp. 171-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p171bwm/

[00000] [1] C. A. Berenstein and M. A. Dostal, Analytically Uniform Spaces and Their Applications to Convolution Equations, Lecture Notes in Math. 256, Springer, 1972. | Zbl 0237.47025

[00001] [2] K. D. Bierstedt, R. Meise and B. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. | Zbl 0599.46026

[00002] [3] J. Bonet and A. Galbis, The range of non-surjective convolution operators on Beurling spaces, Glasgow Math. J. 38 (1996), 125-135. | Zbl 0861.46025

[00003] [4] J. Bonet, A. Galbis and S. Momm, Nonradial Hörmander algebras of several variables, manuscript.

[00004] [5] R. W. Braun, An extension of Komatsu's second structure theorem for ultradistributions, J. Fac. Sci. Univ. Tokyo 40 (1993), 411-417. | Zbl 0811.46031

[00005] [6] W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237. | Zbl 0735.46022

[00006] [7] W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344-370. | Zbl 0699.46021

[00007] [8] Chou, La Transformation de Fourier Complexe et l'Équation de Convolution, Lecture Notes in Math. 325, Springer, 1973. | Zbl 0257.46037

[00008] [9] I. Ciorănescu, Convolution equations in ω-ultradistribution spaces, Rev. Roumaine Math. Pures Appl. 25 (1980), 719-737. | Zbl 0438.46030

[00009] [10] L. Ehrenpreis, Solution of some problems of division, Part IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522-588. | Zbl 0098.08401

[00010] [11] U. Franken and R. Meise, Generalized Fourier expansions for zero-solutions of surjective convolution operators on D’ℝ and Dω', Note Mat. 10, Suppl. 1 (1990), 251-272.

[00011] [12] O. v. Grudzinski, Konstruktion von Fundamentallösungen für Convolutoren, Manuscripta Math. 19 (1976), 283-317. | Zbl 0327.35010

[00012] [13] S. Hansen, Das Fundamentalprinzip für Systeme linearer partieller Differentialgleichungen mit konstanten Koeffizienten, Habilitationsschrift, Paderborn, 1982.

[00013] [14] L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962), 148-170. | Zbl 0109.08501

[00014] [15] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton Univ. Press, 1967. | Zbl 0138.06203

[00015] [16] L. Hörmander, The Analysis of Linear Partial Differential Operators I, II, Springer, 1983. | Zbl 0521.35002

[00016] [17] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105. | Zbl 0258.46039

[00017] [18] M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275. | Zbl 0859.35019

[00018] [19] R. Meise and B. A. Taylor, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat. 26 (1988), 265-287. | Zbl 0683.46020

[00019] [20] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756. | Zbl 0637.46037

[00020] [21] R. Meise, B. A. Taylor and D. Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213-242. | Zbl 0858.46030

[00021] [22] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press, 1997. | Zbl 0924.46002

[00022] [23] T. Meyer, Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type, Studia Math. 125 (1997), 101-129. | Zbl 0897.46023

[00023] [24] S. Momm, Closed ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55. | Zbl 0804.46066

[00024] [25] S. Momm, Division problems in spaces of entire functions of finite order, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. Ruess and D. Vogt (eds.), Marcel Dekker, 1993, 435-457. | Zbl 0803.46025

[00025] [26] S. Momm, A Phragmén-Lindelöf theorem for plurisubharmonic functions on cones in N, Indiana Univ. Math. J. 41 (1992), 861-867. | Zbl 0765.32010