Perfect sets of finite class without the extension property
Goncharov, A.
Studia Mathematica, Tome 122 (1997), p. 161-170 / Harvested from The Polish Digital Mathematics Library

We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216449
@article{bwmeta1.element.bwnjournal-article-smv126i2p161bwm,
     author = {A. Goncharov},
     title = {Perfect sets of finite class without the extension property},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {161-170},
     zbl = {0911.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p161bwm}
}
Goncharov, A. Perfect sets of finite class without the extension property. Studia Mathematica, Tome 122 (1997) pp. 161-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p161bwm/

[00000] [1] L. Białas-Cież, Equivalence of Markov's property and Hölder continuity of the Green function for Cantor-type sets, East J. Approx. 1 (1995), 249-253. | Zbl 0872.41005

[00001] [2] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300. | Zbl 0404.58010

[00002] [3] A. Goncharov, A compact set without Markov’s property but with an extension operator for C functions, Studia Math. 119 (1996), 27-35. | Zbl 0857.46013

[00003] [4] A. Goncharov and M. Kocatepe, Isomorphic classification of the spaces of Whitney functions, to appear. | Zbl 0931.46019

[00004] [5] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th ed., Academic Press, 1994. | Zbl 0918.65002

[00005] [6] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, 1976.

[00006] [7] N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (in Russian). | Zbl 0253.31001

[00007] [8] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.

[00008] [9] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127. | Zbl 0104.08601

[00009] [10] R. Nevanlinna, Analytic Functions, Springer, 1970. | Zbl 0199.12501

[00010] [11] Z. Ogrodzka, On simultaneous extension of infinitely differentiable functions, Studia Math. 28, (1967), 193-207. | Zbl 0177.40802

[00011] [12] W. Pawłucki and W. Pleśniak, Markov’s inequality and C functions on sets with polynomial cusps, Math. Ann. 275, (1986), 467-480. | Zbl 0579.32020

[00012] [13] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. | Zbl 0739.30008

[00013] [14] R. T. Seeley, Extension of C functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626. | Zbl 0127.28403

[00014] [15] J. Siciak, Compact sets in n admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448.

[00015] [16] M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312.

[00016] [17] M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu E(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.

[00017] [18] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. | Zbl 0337.46015

[00018] [19] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).