Hardy spaces associated with some Schrödinger operators
Dziubański, Jacek ; Zienkiewicz, Jacek
Studia Mathematica, Tome 122 (1997), p. 149-160 / Harvested from The Polish Digital Mathematics Library

For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy HA1 space associated with A. An atomic characterization of HA1 is shown.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216448
@article{bwmeta1.element.bwnjournal-article-smv126i2p149bwm,
     author = {Jacek Dziuba\'nski and Jacek Zienkiewicz},
     title = {Hardy spaces associated with some Schr\"odinger operators},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {149-160},
     zbl = {0918.42013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p149bwm}
}
Dziubański, Jacek; Zienkiewicz, Jacek. Hardy spaces associated with some Schrödinger operators. Studia Mathematica, Tome 122 (1997) pp. 149-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p149bwm/

[00000] [D] J. Dziubański, A note on Schrödinger operators with polynomial potentials, preprint. | Zbl 0919.43005

[00001] [DHJ] J. Dziubański, A. Hulanicki, and J. W. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16. | Zbl 0837.43012

[00002] [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. | Zbl 0526.35080

[00003] [FeS] C. Fefferman and E. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078

[00004] [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982. | Zbl 0508.42025

[00005] [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006

[00006] [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.

[00007] [He] W. Hebisch, On operators satisfying Rockland condition, preprint, Univ. of Wrocław.

[00008] [HN] B. Helffer et J. Nourrigat, Une inégalité L2, preprint.

[00009] [S1] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970. | Zbl 0193.10502

[00010] [S2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993.

[00011] [Z] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.