For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy space associated with A. An atomic characterization of is shown.
@article{bwmeta1.element.bwnjournal-article-smv126i2p149bwm, author = {Jacek Dziuba\'nski and Jacek Zienkiewicz}, title = {Hardy spaces associated with some Schr\"odinger operators}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {149-160}, zbl = {0918.42013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p149bwm} }
Dziubański, Jacek; Zienkiewicz, Jacek. Hardy spaces associated with some Schrödinger operators. Studia Mathematica, Tome 122 (1997) pp. 149-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p149bwm/
[00000] [D] J. Dziubański, A note on Schrödinger operators with polynomial potentials, preprint. | Zbl 0919.43005
[00001] [DHJ] J. Dziubański, A. Hulanicki, and J. W. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16. | Zbl 0837.43012
[00002] [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. | Zbl 0526.35080
[00003] [FeS] C. Fefferman and E. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00004] [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982. | Zbl 0508.42025
[00005] [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006
[00006] [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
[00007] [He] W. Hebisch, On operators satisfying Rockland condition, preprint, Univ. of Wrocław.
[00008] [HN] B. Helffer et J. Nourrigat, Une inégalité , preprint.
[00009] [S1] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970. | Zbl 0193.10502
[00010] [S2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993.
[00011] [Z] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.