Estimates for the Poisson kernels and their derivatives on rank one NA groups
Damek, Ewa ; Hulanicki, Andrzej ; Zienkiewicz, Jacek
Studia Mathematica, Tome 122 (1997), p. 115-148 / Harvested from The Polish Digital Mathematics Library

For rank one solvable Lie groups of the type NA estimates for the Poisson kernels and their derivatives are obtained. The results give estimates on the Poisson kernel and its derivatives in a natural parametrization of the Poisson boundary (minus one point) of a general homogeneous, simply connected manifold of negative curvature.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216447
@article{bwmeta1.element.bwnjournal-article-smv126i2p115bwm,
     author = {Ewa Damek and Andrzej Hulanicki and Jacek Zienkiewicz},
     title = {Estimates for the Poisson kernels and their derivatives on rank one NA groups},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {115-148},
     zbl = {0888.22007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p115bwm}
}
Damek, Ewa; Hulanicki, Andrzej; Zienkiewicz, Jacek. Estimates for the Poisson kernels and their derivatives on rank one NA groups. Studia Mathematica, Tome 122 (1997) pp. 115-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p115bwm/

[00000] [A] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), 495-535. | Zbl 0652.31008

[00001] [B] M. Babillot, Théorie de renouvellement pour des chaînes semi-markoviennes transientes, Ann. Inst. H. Poincaré 24 (1988), 507-569. | Zbl 0681.60095

[00002] [BBE] M. Babillot, P. Bougerol and L. Elie, The random difference equation Xn=AnXn-1+Bn in the critical case, Ann. Probab. 25 (1997), 478-493. | Zbl 0873.60045

[00003] [BR] L. Birgé et A. Raugi, Fonctions harmoniques sur les groupes moyennables, C. R. Acad. Sci. Paris 278 (1974), 1287-1289. | Zbl 0279.43006

[00004] [D1] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-195. | Zbl 0675.22005

[00005] [D2] E. Damek, Pointwise estimates for the Poisson kernel on NA groups by the Ancona method, Ann. Fac. Sci. Toulouse 5 (1996), 421-441. | Zbl 0876.22008

[00006] [D3] E. Damek, Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms, Colloq. Math. 73 (1997), 229-249. | Zbl 0878.22007

[00007] [DH1] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. | Zbl 0699.22012

[00008] [DH2] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under the action of a solvable group, Studia Math. 101 (1991), 33-68. | Zbl 0811.43001

[00009] [DH3] E. Damek and A. Hulanicki, Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups, Colloq. Math. 68 (1995), 121-140. | Zbl 0839.22008

[00010] [DR] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-249. | Zbl 0788.43008

[00011] [Hei] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34. | Zbl 0273.53042

[00012] [H] A. Hulanicki, Subalgebra of L1(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005

[00013] [M] P. Malliavin, Géometrie Différentielle Stochastique, Sém. Math. Sup. 64, Les Presses de l'Université de Montréal, Montréal, 1977.

[00014] [N] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. | Zbl 0091.10704

[00015] [P] I. I. Pyatetskiĭ-Shapiro, Geometry and classification of homogeneous bounded domains in n, Uspekhi Mat. Nauk 20 (2) (1965), 3-51 (in Russian); English transl.: Russian Math. Surveys 20 (1966), 1-48.

[00016] [R] A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable, Bull. Soc. Math. France Mém. 54 (1977), 5-118. | Zbl 0389.60003

[00017] [Ro] D. W. Robinson, Elliptic Operators and Lie Groups, Oxford Math. Monographs, Clarendon Press, 1991.

[00018] [So] J. Sołowiej, Fatou theorem - a negative result, Colloq. Math. 67 (1995), 131-145. | Zbl 0839.22009

[00019] [S] D. Stroock, Lectures on Stochastic Analysis: Diffusion Theory, Cambridge Univ. Press, 1987. | Zbl 0605.60057

[00020] [SV] D. Stroock and S. R. Varadhan, Multidimensional Diffusion Processes, Springer, 1979. | Zbl 0426.60069

[00021] [T] J. C. Taylor, Skew products, regular conditional probabilities and stochastic differential equations: a technical remark, in: Séminaire de Probabilités XXVI, Lecture Notes in Math. 1526, Springer, 1992, 113-126. | Zbl 0763.60031

[00022] [U] K. Urbanik, Functionals of transient stochastic processes with independent increments, Studia Math. 103 (1992), 299-314. | Zbl 0809.60068

[00023] [V1] N. T. Varopoulos, Diffusion on Lie groups (I), Canad. J. Math. 46 (1994), 1073-1093.

[00024] [V2] N. T. Varopoulos, The heat kernel on Lie groups, Rev. Mat. Iberoamericana 12 (1996), 147-186. | Zbl 0853.22006

[00025] [V3] N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, 1992.

[00026] [Vi] E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403. | Zbl 0138.43301