We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If is a Lipschitzian semigroup such that , where c > 0 is some constant, then there exists x ∈ C such that for all s ∈ G.
@article{bwmeta1.element.bwnjournal-article-smv126i2p101bwm, author = {Jaros\l aw G\'ornicki}, title = {Fixed points of Lipschitzian semigroups in Banach spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {101-113}, zbl = {0894.47044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p101bwm} }
Górnicki, Jarosław. Fixed points of Lipschitzian semigroups in Banach spaces. Studia Mathematica, Tome 122 (1997) pp. 101-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i2p101bwm/
[00000] [1] J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach I, Séminaire d'Analyse Fonctionnelle 1978-1979, École Polytechnique, Centre de Mathématiques, Exposé 7, Nov. 1978.
[00001] [2] J. Barros-Neto, An Introduction to the Theory of Distributions, Dekker, New York, 1973.
[00002] [3] E. Casini and E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985), 103-108. | Zbl 0526.47034
[00003] [4] T. Domínguez Benavides, Fixed point theorems for uniformly Lipschitzian mappings and asymptotically regular mappings, Nonlinear Anal., to appear.
[00004] [5] T. Domínguez Benavides, Geometric constants concerning metric fixed point theory: finite or infinite dimensional character, in: Proc. World Congress of Nonlinear Analysts, Athens, 1996, to appear.
[00005] [6] T. Domínguez Benavides and H. K. Xu, A new geometrical coefficient for Banach spaces and its applications in fixed point theory, Nonlinear Anal. 25 (1995), 311-325. | Zbl 0830.47041
[00006] [7] D. J. Downing and W. O. Ray, Uniformly Lipschitzian semigroups in Hilbert space, Canad. Math. Bull. 25 (1982), 210-214. | Zbl 0438.47059
[00007] [8] N. Dunford and J. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958. | Zbl 0084.10402
[00008] [9] P. L. Duren, Theory of Spaces, Academic Press, New York, 1970. | Zbl 0215.20203
[00009] [10] K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135-140. | Zbl 0265.47044
[00010] [11] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, London, 1990. | Zbl 0708.47031
[00011] [12] K. Goebel, W. A. Kirk and R. L. Thele, Uniformly Lipschitzian families of transformations in Banach spaces, Canad. J. Math. 26 (1974), 1245-1256. | Zbl 0285.47039
[00012] [13] J. Górnicki, A remark on fixed point theorems for Lipschitzian mappings, J. Math. Anal. Appl. 183 (1994), 495-508. | Zbl 0806.47050
[00013] [14] J. Górnicki, The review of [6], Math. Rev. MR96e:47062. | Zbl 1193.47055
[00014] [15] J. Górnicki, Lipschitzian semigroups in Hilbert space, in: Proc. World Congress of Nonlinear Analysts, Athens, 1996, to appear. | Zbl 0894.47043
[00015] [16] J. Górnicki and M. Krüppel, Fixed points of uniformly Lipschitzian mappings, Bull. Polish Acad. Sci. Math. 36 (1988), 57-63. | Zbl 0676.47039
[00016] [17] J. Górnicki and M. Krüppel, Fixed point theorems for mappings with Lipschitzian iterates, Nonlinear Anal. 19 (1992), 353-363. | Zbl 0780.47040
[00017] [18] T. J. Huang and Y. Y. Huang, Fixed point theorems for uniformly Lipschitzian semigroups in metric spaces, Indian J. Pure Appl. Math. 26 (1995), 233-239. | Zbl 0873.54047
[00018] [19] H. Ishihara, Fixed point theorems for Lipschitzian semigroups, Canad. Math. Bull. 32 (1989), 90-97. | Zbl 0638.47061
[00019] [20] H. Ishihara and W. Takahashi, Fixed point theorems for uniformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1978), 206-210. | Zbl 0637.47028
[00020] [21] M. Krüppel, Ungleichungen für den asymptotischen Radius in uniform konvexen Banach-Räumen mit Anwendungen in der Fixpunkttheorie, Rostock. Math. Kolloq. 48 (1995), 59-74.
[00021] [22] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN and UŚ, Warszawa-Kraków-Katowice, 1985.
[00022] [23] E. A. Lifshitz, Fixed point theorems for operators in strongly convex spaces, Voronezh. Gos. Univ. Trudy Mat. Fak. 16 (1975), 23-28 (in Russian).
[00023] [24] T. C. Lim, On some inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528. | Zbl 0744.41015
[00024] [25] T. C. Lim, H. K. Xu and Z. B. Xu, An inequality and its applications to fixed point theory and approximation theory, in: Progress in Approximation Theory, P. Nevai and A. Pinkus (eds.), Academic Press, New York, 1991, 609-624.
[00025] [26] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer, Berlin, 1979. | Zbl 0403.46022
[00026] [27] N. Mizoguchi and W. Takahashi, On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert space, Nonlinear Anal. 14 (1990), 69-80. | Zbl 0695.47063
[00027] [28] B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. | Zbl 0617.41046
[00028] [29] R. Smarzewski, Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, ibid. 115 (1986), 155-172. | Zbl 0593.49004
[00029] [30] R. Smarzewski, Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51 (1987), 202-217. | Zbl 0657.41022
[00030] [31] R. Smarzewski, On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. | Zbl 0716.46023
[00031] [32] K. K. Tan and H. K. Xu, Fixed point theorems for Lipschitzian semigropus in Banach spaces, Nonlinear Anal. 20 (1993), 395-404. | Zbl 0781.47044
[00032] [33] H. K. Xu, Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex Banach spaces, J. Math. Anal. Appl. 152 (1990), 391-398. | Zbl 0722.47050
[00033] [34] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. | Zbl 0757.46033
[00034] [35] C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344-374. | Zbl 0519.49010
[00035] [36] L.-C. Zeng, On the existence of fixed points and nonlinear ergodic retractions for Lipschitzian semigroups without convexity, Nonlinear Anal. 24 (1995), 1347-1359. | Zbl 0858.47035