Connections between Hankel transforms of different order for -functions are examined. Well known are the results of Guy [Guy] and Schindler [Sch]. Further relations result from projection formulae for Bessel functions of different order. Consequences for Hankel multipliers are exhibited and implications for radial Fourier multipliers on Euclidean spaces of different dimensions indicated.
@article{bwmeta1.element.bwnjournal-article-smv126i1p51bwm, author = {Krzysztof Stempak and Walter Trebels}, title = {Hankel multipliers and transplantation operators}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {51-66}, zbl = {1030.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv126i1p51bwm} }
Stempak, Krzysztof; Trebels, Walter. Hankel multipliers and transplantation operators. Studia Mathematica, Tome 122 (1997) pp. 51-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv126i1p51bwm/
[00000] [CW] R. Coifman and G. Weiss, Some examples of transference methods in harmonic analysis, in: Symposia Math. 22, Academic Press, New York, 1977, 33-45.
[00001] [EMOT] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York, 1954. | Zbl 0055.36401
[00002] [GT] G. Gasper and W. Trebels, Necessary conditions for Hankel multipliers, Indiana Univ. Math. J. 31 (1982), 403-414. | Zbl 0494.44003
[00003] [Guy] D. L. Guy, Hankel multiplier transformations and weighted p-norms, Trans. Amer. Math. Soc. 95 (1960), 137-189. | Zbl 0091.10202
[00004] [He] C. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. | Zbl 0059.09901
[00005] [Hi1] I. I. Hirschman, Jr., Multiplier transformations, II, Duke Math. J. 28 (1961), 45-56.
[00006] [Hi2] I. I. Hirschman, The decomposition of Walsh and Fourier series, Mem. Amer. Math. Soc. 15 (1955).
[00007] [MWY] B. Muckenhoupt, R. L. Wheeden and W.-S. Young, multipliers with power weights, Adv. Math. 49 (1983), 170-216.
[00008] [RdF] J. L. Rubio de Francia, Transference principles for radial multipliers, Duke Math. J. 58 (1989), 1-19.
[00009] [SKM] S. G. Samko, A. A. Kilbas and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i Tekhnika, Minsk, 1987 (in Russian). | Zbl 0617.26004
[00010] [Sch] S. Schindler, Explicit integral transform proofs of some transplantation theorems for the Hankel transform, SIAM J. Math. Anal. 4 (1973), 367-384. | Zbl 0227.44007
[00011] [To] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.
[00012] [T] W. Trebels, Some Fourier multiplier criteria and the spherical Bochner-Riesz kernel, Rev. Roumaine Math. Pures Appl. 20 (1975), 1173-1185. | Zbl 0328.42003
[00013] [W] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1966. | Zbl 0174.36202
[00014] [Wi] G. M. Wing, On the theory of Hankel transforms, Pacific J. Math. 1 (1951), 313-319. | Zbl 0044.10906
[00015] [Z1] A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576. | Zbl 0154.13803
[00016] [Z2] A. H. Zemanian, Hankel transform of arbitrary order, Duke Math. J. 34 (1967), 761-769. | Zbl 0177.39903