We characterize tauberian operators in terms of the images of disjoint sequences and in terms of the image of the dyadic tree in . As applications, we show that the class of tauberian operators is stable under small norm perturbations and that its perturbation class coincides with the class of all weakly precompact operators. Moreover, we prove that the second conjugate of a tauberian operator is also tauberian, and the induced operator is an isomorphism into. Also, we show that embeds isomorphically into the quotient of by any of its reflexive subspaces.
@article{bwmeta1.element.bwnjournal-article-smv125i3p289bwm, author = {Manuel Gonz\'alez and Antonio Mart\'\i nez-Abej\'on}, title = {Tauberian operators on $L\_1($\mu$)$ spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {289-303}, zbl = {0907.47026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p289bwm} }
González, Manuel; Martínez-Abejón, Antonio. Tauberian operators on $L_1(μ)$ spaces. Studia Mathematica, Tome 122 (1997) pp. 289-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p289bwm/
[00000] [1] T. Alvarez and M. González, Some examples of tauberian operators, Proc. Amer. Math. Soc. 111 (1991), 1023-1027. | Zbl 0733.47017
[00001] [2] B. Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland Math. Stud. 68, North-Holland, 1985. | Zbl 0585.46009
[00002] [3] W. J. Davis, T. Figiel, W. B. Johnson and A. Pe/lczy/nski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. | Zbl 0306.46020
[00003] [4] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
[00004] [5] J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
[00005] [6] P. Enflo and T. W. Starbird, Subspaces of containing , Studia Math. 65 (1979), 203-225.
[00006] [7] M. González, Properties and applications of tauberian operators, Extracta Math. 5 (1990), 91-107. | Zbl 0748.47001
[00007] [8] M. González and A. Martínez-Abejón, Supertauberian operators and perturbations, Arch. Math. (Basel) 64 (1995), 423-433.
[00008] [9] M. González and V. M. Onieva, Characterizations of tauberian operators and other semigroups of operators, Proc. Amer. Math. Soc. 108 (1990), 399-405. | Zbl 0704.47016
[00009] [10] R. H. Herman, Generalizations of weakly compact operators, Trans. Amer. Math. Soc. 132 (1968), 377-386. | Zbl 0159.43004
[00010] [11] R. C. James, Characterizations of reflexivity, Studia Math. 23 (1964), 205-216. | Zbl 0113.09303
[00011] [12] R. C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101-119. | Zbl 0127.32502
[00012] [13] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in , Studia Math. 21 (1962), 161-176.
[00013] [14] N. Kalton and A. Wilansky, Tauberian operators on Banach spaces, Proc. Amer. Math. Soc. 57 (1976), 251-255.
[00014] [15] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26. | Zbl 0209.45002
[00015] [16] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. | Zbl 0362.46013
[00016] [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979. | Zbl 0403.46022
[00017] [18] A. Martínez-Abejón, Semigrupos de operadores y ultrapotencias, Ph.D. thesis, Universidad de Cantabria, 1994.
[00018] [19] D. P. Milman and V. D. Milman, The geometry of nested families with empty intersection. The structure of the unit sphere of a non-reflexive space, Mat. Sb. 66 (1965), 109-118 (in Russian); English transl.: Amer. Math. Soc. Transl. 85 (1969).
[00019] [20] R. Neidinger and H. P. Rosenthal, Norm-attainment of linear functionals on subspaces and characterizations of tauberian operators, Pacific J. Math. 118 (1985), 215-228. | Zbl 0537.46018
[00020] [21] H. P. Rosenthal, On subspaces of , Ann. of Math. 97 (1973), 344-373. | Zbl 0253.46049
[00021] [22] H. P. Rosenthal, Double dual types and the Maurey characterization of Banach spaces containing , in: Texas Functional Analysis Seminar 1983-1984 (Austin, Tex.), Longhorn Notes, The Univ. of Texas Press, Austin, Tex., 1984, 1-37.
[00022] [23] H. P. Rosenthal, On wide-(s) sequences and their applications to certain classes of operators, preprint. | Zbl 0932.46007
[00023] [24] W. Schachermayer, For a Banach space isomorphic to its square the Radon-Nikodým and the Krein-Milman property are equivalent, Studia Math. 81 (1985), 329-339. | Zbl 0631.46019
[00024] [25] D. G. Tacon, Generalized semi-Fredholm transformations, J. Austral. Math. Soc. Ser. A 34 (1983), 60-70. | Zbl 0531.47011
[00025] [26] D. G. Tacon, Generalized Fredholm transformations, ibid. 37 (1984), 89-97. | Zbl 0605.47010