We study the factors of Gaussian dynamical systems which are generated by functions depending only on a finite number of coordinates. As an application, we show that for Gaussian automorphisms with simple spectrum, the partition is generating.
@article{bwmeta1.element.bwnjournal-article-smv125i3p247bwm, author = {A. Iwanik and M. Lema\'nczyk and T. de la Rue and J. de Sam Lazaro}, title = {Quelques remarques sur les facteurs des syst\`emes dynamiques gaussiens}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {247-254}, language = {fr}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p247bwm} }
Iwanik, A.; Lemańczyk, M.; de la Rue, T.; de Sam Lazaro, J. Quelques remarques sur les facteurs des systèmes dynamiques gaussiens. Studia Mathematica, Tome 122 (1997) pp. 247-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p247bwm/
[00000] [1] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic Theory, Springer, 1982.
[00001] [2] M. Lemańczyk, F. Parreau and J.-P. Thouvenot, On the disjointness problem for Gaussian automorphisms, preprint.
[00002] [3] M. Lemańczyk and F. Parreau, Gaussian automorphisms whose self-joinings are Gaussian, preprint.
[00003] [4] M. Lemańczyk and J. de Sam Lazaro, Spectral analysis of certain compact factors for Gaussian dynamical systems, Israel J. Math. (1996), à paraître.
[00004] [5] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, Van Nostrand, Princeton, 1953.
[00005] [6] D. Newton, On Gaussian processes with simple spectrum, Z. Wahrsch. Verw. Gebiete 5 (1966), 207-209.
[00006] [7] D. Newton and W. Parry, On a factor automorphism of a normal dynamical system, Ann. Math. Statist. 37 (1966), 1528-1533.
[00007] [8] W. Parry, Generators in Ergodic Theory, Benjamin, New York, 1969.
[00008] [9] T. de la Rue, Entropie d’un système dynamique gaussien : cas d’une action de , C. R. Acad. Sci. Paris Sér. I 317 (1993), 191-194.
[00009] [10] J. P. Thouvenot, Some properties and applications of joinings in ergodic theory, in: Ergodic Theory and its Connections with Harmonic Analysis, London Math. Soc. Lecture Note Ser. 205, Cambridge Univ. Press, 1995, 207-235.
[00010] [11] J. P. Thouvenot, Utilisation des processus gaussiens en théorie ergodique, preprint.