Let P(z,β) be the Poisson kernel in the unit disk , and let be the λ -Poisson integral of f, where . We let be the normalization . If λ >0, we know that the best (regular) regions where converges to f for a.a. points on ∂ are of nontangential type. If λ =0 the situation is different. In a previous paper, we proved a result concerning the convergence of toward f in an weakly tangential region, if and p > 1. In the present paper we will extend the result to symmetric spaces X of rank 1. Let f be an function on the maximal distinguished boundary K/M of X. Then will converge to f(kM) as x tends to kM in an weakly tangential region, for a.a. kM ∈ K/M.
@article{bwmeta1.element.bwnjournal-article-smv125i3p219bwm, author = {Jan-Olav R\"onning}, title = {On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {219-229}, zbl = {0917.42025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p219bwm} }
Rönning, Jan-Olav. On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1. Studia Mathematica, Tome 122 (1997) pp. 219-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p219bwm/
[00000] [He78] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, 1978.
[00001] [DR92] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248. | Zbl 0788.43008
[00002] [Kor85] A. Korányi, Geometric properties of Heisenberg-type groups, Adv. Math. 56 (1985), 28-38. | Zbl 0589.53053
[00003] [JOR] J.-O. Rönning, Convergence for square roots of Poisson kernels in weakly tangential regions, Math. Scand., to appear.
[00004] [Sjö83] P. Sjögren, Fatou theorems and maximal functions for eigenfunctions of the Laplace-Beltrami operator in a bidisk, J. Reine Angew. Math. 345 (1983), 93-110. | Zbl 0512.43005
[00005] [Sjö84] P. Sjögren, A Fatou theorem for eigenfunctions of the Laplace-Beltrami operator in a symmetric space, Duke Math. J. 51 (1984), 47-56. | Zbl 0543.43007
[00006] [Sjö84a] P. Sjögren, Une remarque sur la convergence des fonctions propres du Laplacian à valeur propre critique, in: Lecture Notes in Math. 1096, Springer, 1984, 544-548.
[00007] [Sjö88] P. Sjögren, Convergence for the square root of the Poisson kernel, Pacific J. Math. 131 (1988), 361-391. | Zbl 0601.31001