On the relation between complex and real methods of interpolation
Mastyło, Mieczysław ; Ovchinnikov, Vladimir
Studia Mathematica, Tome 122 (1997), p. 201-218 / Harvested from The Polish Digital Mathematics Library

We study those compatible couples of Banach spaces for which the complex method interpolation spaces are also described by the K-method of interpolation. As an application we present counter-examples to Cwikel's conjecture that all interpolation spaces of a Banach couple are described by the K-method whenever all complex interpolation spaces have this property.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216433
@article{bwmeta1.element.bwnjournal-article-smv125i3p201bwm,
     author = {Mieczys\l aw Masty\l o and Vladimir Ovchinnikov},
     title = {On the relation between complex and real methods of interpolation},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {201-218},
     zbl = {0910.46058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p201bwm}
}
Mastyło, Mieczysław; Ovchinnikov, Vladimir. On the relation between complex and real methods of interpolation. Studia Mathematica, Tome 122 (1997) pp. 201-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i3p201bwm/

[00000] [A] S. V. Astashkin, Description of interpolation orbits between (l1(w0),l1(w1)) and (l(w0),l(w1)), Mat. Zametki 35 (1984), 497-503 (in Russian); English transl.: Math. Notes 35 (1984), 261-265.

[00001] [B] J. Bergh, On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775-778. | Zbl 0394.41004

[00002] [BL] J. Bergh and J. Löfström, Interpolation spaces. An Introduction, Springer, Berlin 1976. | Zbl 0344.46071

[00003] [BK] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces. I, North-Holland, Amsterdam, 1991.

[00004] [Ca] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. | Zbl 0204.13703

[00005] [Cw1] M. Cwikel, On (Lp0(A0),Lp1(A1))θ,q, Proc. Amer. Math. Soc. 44 (1974), 286-292.

[00006] [Cw2] M. Cwikel, Monotonicity properties of interpolation spaces II, Ark. Mat. 19 (1981), 123-136. | Zbl 0467.46061

[00007] [Cw3] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343. | Zbl 0787.46062

[00008] [CM1] M. Cwikel and M. Mastyło, The universal right K-property for Banach lattices, preprint.

[00009] [CM2] M. Cwikel and M. Mastyło, On Banach couples which satisfy the condition (A0,A1)θ,0=(A0,A1)θ,, preprint.

[00010] [CM3] M. Cwikel and M. Mastyło, On interpolation spaces containing copies of c0 and l, preprint.

[00011] [CN] M. Cwikel and P. Nilsson, On Calderón-Mityagin couples of Banach lattices, in: Proc. Conf. Constructive Theory of Functions, Varna, 1984, Bulgar. Acad. Sci., 1984, 232-236.

[00012] [CP] M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50.

[00013] [DKO] V. I. Dmitriev, S. G. Kreĭn and V. I. Ovchinnikov, Fundamentals of the theory of interpolation of linear operators, in: Geometry of Linear Spaces and Operator Theory, Yaroslavl', 1977, 31-74 (in Russian).

[00014] [DO] V. I. Dmitriev and V. I. Ovchinnikov, On the real method spaces, Dokl. Akad. Nauk SSSR 246 (1979), 794-799 (in Russian); English transl.: Soviet Math. Dokl. 20 (1979), 538-542.

[00015] [H] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. | Zbl 0193.08801

[00016] [J] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73. | Zbl 0492.46059

[00017] [K] N. J. Kalton, Calderón couples of rearrangement invariant spaces, Studia Math. 106 (1993), 233-277. | Zbl 0810.46020

[00018] [KPS] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Nauka, Moscow, 1978 (in Russian); English transl.: Amer. Math. Soc., Providence, 1982.

[00019] [M1] M. Mastyło, Interpolation between some symmetric spaces, Arch. Math. (Basel) 52 (1989), 571-579. | Zbl 0691.46050

[00020] [M2] M. Mastyło, K-monotone spaces between spaces of absolutely summable series, Forum Math. 2 (1990), 73-87. | Zbl 0724.46054

[00021] [MX] M. Mastyło and Q. Xu, Monotonicity between vector-valued bounded sequence spaces, Bull. Polish Acad. Sci. Math. 41 (1993), 177-187. | Zbl 0805.46076

[00022] [O1] V. I. Ovchinnikov, Interpolation theorems resulting from Grothendieck's inequality, Funktsional. Anal. i Prilozhen. 10 (4) (1976), 45-54 (in Russian); English transl.: Functional Anal. Appl. 10 (1977), 287-294.

[00023] [O2] V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), 349-516.

[00024] [OD] V. I. Ovchinnikov and V. I. Dmitriev, The limits of the applicability of the K-method of interpolation, in: Collection of Articles on Applications of Functional Analysis, Voronezh 1975, 102-108 (in Russian).

[00025] [Pe] J. Peetre, Banach couples, I: Elementary theory, Technical Report, Lund, 1971.

[00026] [Pi] G. Pisier, Interpolation between Hp spaces and non-commutative generalizations. I, Pacific J. Math. 155 (1992), 341-368. | Zbl 0747.46050

[00027] [R] H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13-36. | Zbl 0227.46027

[00028] [S] V. A. Shestakov, Complex interpolation in Banach spaces of measurable functions, Vestnik Leningrad. Univ. 19 (1974), 64-68 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 7 (1979). | Zbl 0297.46028