@article{bwmeta1.element.bwnjournal-article-smv125i2p179bwm, author = {Daniel Azagra}, title = {Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {179-186}, zbl = {0899.58007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p179bwm} }
Azagra, Daniel. Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces. Studia Mathematica, Tome 122 (1997) pp. 179-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p179bwm/
[00000] [1] C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 27-31. | Zbl 0151.17703
[00001] [2] C. Bessaga, Interplay between infinite-dimensional topology and functional analysis. Mappings defined by explicit formulas and their applications, Topology Proc. 19 (1994), 15-35. | Zbl 0840.46008
[00002] [3] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Monograf. Mat. 58, PWN, Warszawa, 1975.
[00003] [4] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure and Appl. Math. 64, Longman, 1993. | Zbl 0782.46019
[00004] [5] T. Dobrowolski, Smooth and R-analytic negligibility of subsets and extension of homeomorphisms in Banach spaces, Studia Math. 65 (1979), 115-139. | Zbl 0421.46012
[00005] [6] T. Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere, J. Funct. Anal. 134 (1995), 350-362. | Zbl 0869.46013
[00006] [7] T. Dobrowolski, Relative classification of smooth convex bodies, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 309-312. | Zbl 0354.58005
[00007] [8] B. M. Garay, Cross-sections of solution funnels in Banach spaces, Studia Math. 97 (1990), 13-26. | Zbl 0714.34099
[00008] [9] B. M. Garay, Deleting homeomorphisms and the failure of Peano's existence theorem in infinite-dimensional Banach spaces, Funkcial. Ekvac. 34 (1991), 85-93. | Zbl 0734.34055
[00009] [10] K. Goebel and J. Wośko, Making a hole in the space, Proc. Amer. Math. Soc. 114 (1992), 475-476. | Zbl 0747.46011
[00010] [11] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. | Zbl 0838.46011
[00011] [12] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. | Zbl 0827.46008
[00012] [13] R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129-140. | Zbl 0129.07901
[00013] [14] K V. L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, ibid. 74 (1953), 10-43. | Zbl 0050.33202
[00014] [15] S. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-180. | Zbl 0214.12701