The algebra B(ℋ) of all bounded operators on a Hilbert space ℋ is generated in the strong operator topology by a single one-dimensional projection and a family of commuting unitary operators with cardinality not exceeding dim ℋ. This answers Problem 8 posed by W. Żelazko in [6].
@article{bwmeta1.element.bwnjournal-article-smv125i2p175bwm, author = {R. Berntzen and A. So\l tysiak}, title = {On strong generation of B(H) by two commutative C*-algebras}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {175-178}, zbl = {0891.47029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p175bwm} }
Berntzen, R.; Sołtysiak, A. On strong generation of B(ℋ) by two commutative C*-algebras. Studia Mathematica, Tome 122 (1997) pp. 175-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p175bwm/
[00000] [1] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985. | Zbl 0558.46001
[00001] [2] C. Davis, Generators of the ring of bounded operators, Proc. Amer. Math. Soc. 6 (1955), 970-972. | Zbl 0066.09801
[00002] [3] E. A. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, Quadratic operators and invariant subspaces, Studia Math. 88 (1988), 263-268. | Zbl 0648.47008
[00003] [4] G. K. Pedersen, Analysis Now, Springer, New York, 1995. | Zbl 0668.46002
[00004] [5] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, Berlin, 1973. | Zbl 0269.47003
[00005] [6] W. Żelazko, Generation of B(X) by two commutative subalgebras - results and open problems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1994, 363-367. | Zbl 0813.47056