The density condition in quotients of quasinormable Fréchet spaces
Albanese, Angela
Studia Mathematica, Tome 122 (1997), p. 131-141 / Harvested from The Polish Digital Mathematics Library

It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216427
@article{bwmeta1.element.bwnjournal-article-smv125i2p131bwm,
     author = {Angela Albanese},
     title = {The density condition in quotients of quasinormable Fr\'echet spaces},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {131-141},
     zbl = {0912.46001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p131bwm}
}
Albanese, Angela. The density condition in quotients of quasinormable Fréchet spaces. Studia Mathematica, Tome 122 (1997) pp. 131-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p131bwm/

[00000] [1] A. Aytuna, P. B. Djakov, A. P. Goncharov, T. Terzioğlu and V. P. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Locally Complex Analysis I, A. Aytuna (ed.), Metu-Tübitak, Ankara, 1994, 147-164. | Zbl 0859.46002

[00001] [2] S. F. Bellenot, Basic sequences in non-Schwartz Fréchet spaces, Trans. Amer. Math. Soc. 258 (1980), 199-216. | Zbl 0426.46001

[00002] [3] S. F. Bellenot and E. Dubinsky, Fréchet spaces with nuclear Köthe quotients, ibid. 273 (1982), 579-594. | Zbl 0494.46001

[00003] [4] K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180. | Zbl 0688.46001

[00004] [5] J. Bonet, A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull. 34 (1991), 301-304. | Zbl 0698.46002

[00005] [6] J. Bonet and J. C. Díaz, Distinguished subspaces and quotients of Köthe echelon spaces, Bull. Polish Acad. Sci. Math. 39 (1991), 177-183. | Zbl 0777.46007

[00006] [7] J. Bonet and J. C. Díaz, The density condition in subspaces and quotients of Fréchet spaces, Monatsh. Math. 117 (1994), 199-212. | Zbl 0804.46002

[00007] [8] J. C. Díaz and C. Fernández, Quotients of Köthe sequence spaces of infinite order, Arch. Math. (Basel) 66 (1996), 207-213.

[00008] [9] A. Grothendieck, Sur les espaces (F) and (DF), Summa Brasil. Math. 3 (1954), 57-123.

[00009] [10] S. Heinrich, Ultrapowers of locally convex spaces and applications I, Math. Nachr. 118 (1984), 211-219.

[00010] [11] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001

[00011] [12] G. Köthe, Topological Vector Spaces I, II, Springer, Berlin, 1969 and 1979. | Zbl 0179.17001

[00012] [13] R. Meise and D. Vogt, A characterization of the quasi-normable Fréchet spaces, Math. Nachr. 122 (1985), 141-150. | Zbl 0583.46002