Let denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For with one can define the convolution operator , . We give a characterization of the surjectivity of for quasianalytic classes , where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform of μ.
@article{bwmeta1.element.bwnjournal-article-smv125i2p101bwm, author = {Thomas Meyer}, title = {Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {101-129}, zbl = {0897.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p101bwm} }
Meyer, Thomas. Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type. Studia Mathematica, Tome 122 (1997) pp. 101-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i2p101bwm/
[00000] [1] L. V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, 1973.
[00001] [2] C. A. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable, Adv. in Math. 33 (1979), 109-143. | Zbl 0432.30028
[00002] [3] A. Beurling, Quasianalyticity and general distributions, Lectures 4 and 5, Amer. Math. Soc. Summer Institute (Stanford, 1961).
[00003] [4] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1965), 351-407.
[00004] [5] R. W. Braun, A sufficient criterion for the vanishing of for (DFS)-spectra, preprint.
[00005] [6] R. W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237. | Zbl 0735.46022
[00006] [7] R. W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultra-differentiable functions, Proc. London Math. Soc. (3) 61 (1990), 344-370. | Zbl 0699.46021
[00007] [8] R. W. Braun, R. Meise and D. Vogt, Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type, Math. Nachr. 168 (1994), 19-54. | Zbl 0848.35023
[00008] [9] Yu. F. Korobeĭnik, Solvability of a convolution equation in some classes of analytic functions, Mat. Zametki 49 (2) (1991), 76-83 (in Russian); English transl.: Math. Notes 49 (1991), 165-172.
[00009] [10] G. Köthe, Topological Vector Spaces II, Grundlehren Math. Wiss. 237, Springer, 1979. | Zbl 0417.46001
[00010] [11] M. Langenbruch, Hyperfunction fundamental solutions of surjective convolution operators on real analytic functions, J. Funct. Anal. 131 (1995), 78-93. | Zbl 0841.46025
[00011] [12] R. Meise, Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, Studia Math. 92 (1989), 211-230. | Zbl 0702.46024
[00012] [13] R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals, J. Reine Angew. Math. 363 (1985), 59-95. | Zbl 0574.46043
[00013] [14] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756. | Zbl 0637.46037
[00014] [15] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992.
[00015] [16] T. Meyer, Die Fourier-Laplace-Transformation quasianalytischer Funktionale und ihre Anwendung auf Faltungsoperatoren, Diplomarbeit, Düsseldorf, 1989.
[00016] [17] T. Meyer, Surjektivität von Faltungsoperatoren auf Räumen ultradifferenzierbarer Funktionen vom Roumieu Typ, Thesis, Düsseldorf, 1992.
[00017] [18] S. Momm, Closed principal ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55. | Zbl 0804.46066
[00018] [19] S. Momm, Convolution equations on the analytic functions on convex domains in the plane, Bull. Sci. Math. 118 (1994), 259-270. | Zbl 0819.46039
[00019] [20] S. Momm, Ideale in gewichteten Algebren holomorpher Funktionen auf dem Einheitskreis, Dissertation, Düsseldorf, 1988. | Zbl 0657.32009
[00020] [21] V. V. Napalkov and I. A. Rudakov, Convolution operator in the space of real analytic functions, Mat. Zametki 49 (3) (1991), 57-65 (in Russian); English transl.: Math. Notes 49 (1991), 266-271. | Zbl 0763.47012
[00021] [22] V. P. Palamodov, The projective limit functor in the category of linear topological spaces, Math. USSR-Sb. 4 (1968), 529-559. | Zbl 0175.41801
[00022] [23] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. (3) 77 (1960), 41-121. | Zbl 0104.33403
[00023] [24] B. A. Taylor, Analytically uniform spaces of infinitely differentiable functions, Comm. Pure Appl. Math. 24 (1971), 39-51. | Zbl 0205.41501
[00024] [25] D. Vogt, Lectures on projective spectra of (DF)-spaces, Universität Wuppertal, 1987.
[00025] [26] D. Vogt, Topics on projective spectra of (LB)-spaces, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer, Dordrecht, 1989, 11-27.
[00026] [27] D. Vogt, Regularity properties of (LF)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, J. Horváth and M. Maestre (eds.), North-Holland Math. Stud. 170, North-Holland, 1992, 57-84. | Zbl 0779.46005
[00027] [28] J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Math. 120 (1996), 247-258. | Zbl 0863.46002