An irreducible semigroup of idempotents
Drnovšek, Roman
Studia Mathematica, Tome 122 (1997), p. 97-99 / Harvested from The Polish Digital Mathematics Library

We construct a semigroup of bounded idempotents with no nontrivial invariant closed subspace. This answers a question which was open for some time.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216425
@article{bwmeta1.element.bwnjournal-article-smv125i1p97bwm,
     author = {Roman Drnov\v sek},
     title = {An irreducible semigroup of idempotents},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {97-99},
     zbl = {0886.47005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p97bwm}
}
Drnovšek, Roman. An irreducible semigroup of idempotents. Studia Mathematica, Tome 122 (1997) pp. 97-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p97bwm/

[00000] [1] P. Fillmore, G. MacDonald, M. Radjabalipour and H. Radjavi, Towards a classification of maximal unicellular bands, Semigroup Forum 49 (1994), 195-215. | Zbl 0811.20061

[00001] [2] D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, A nil algebra of bounded operators on Hilbert space with semisimple norm closure, Integral Equations Operator Theory 9 (1986), 739-743. | Zbl 0631.47034

[00002] [3] H. Radjavi, On the reduction and triangularization of semigroups of operators, J. Operator Theory 13 (1985), 65-71. | Zbl 0581.47026

[00003] [4] H. Radjavi, Invariant subspaces and spectral conditions on operator semigroups, in: Linear Operators, Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 287-296. | Zbl 0931.47006