Estimates of Fourier transforms in Sobolev spaces
Kolyada, V.
Studia Mathematica, Tome 122 (1997), p. 67-74 / Harvested from The Polish Digital Mathematics Library

We investigate the Fourier transforms of functions in the Sobolev spaces W1r1,...,rn. It is proved that for any function fW1r1,...,rn the Fourier transform f̂ belongs to the Lorentz space Ln/r,1, where r=n(j=1n1/rj)-1n. Furthermore, we derive from this result that for any mixed derivative Dsf(fC0,s=(s1,...,sn)) the weighted norm (Dsf)L1(w)(w(ξ)=|ξ|-n) can be estimated by the sum of L1-norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216422
@article{bwmeta1.element.bwnjournal-article-smv125i1p67bwm,
     author = {V. Kolyada},
     title = {Estimates of Fourier transforms in Sobolev spaces},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {67-74},
     zbl = {0896.42008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p67bwm}
}
Kolyada, V. Estimates of Fourier transforms in Sobolev spaces. Studia Mathematica, Tome 122 (1997) pp. 67-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p67bwm/

[00000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. | Zbl 0647.46057

[00001] [2] J. Berg and Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.

[00002] [3] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Vols. 1, 2, Wiley, 1979.

[00003] [4] J. Bourgain, A Hardy inequality in Sobolev spaces, Vrije University, Brussels, 1981.

[00004] [5] J. Bourgain, Some examples of multipliers in Sobolev spaces, IHES, 1985.

[00005] [6] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276. | Zbl 0181.40301

[00006] [7] W. B. Jurkat and G. Sampson, On maximal rearrangement inequalities for the Fourier transform, Trans. Amer. Math. Soc. 282 (1984), 625-643. | Zbl 0537.42029

[00007] [8] V. I. Kolyada, On embedding of Sobolev spaces, Mat. Zametki 54 (3) (1993), 48-71 (in Russian). | Zbl 0821.46043

[00008] [9] J. Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem. Mat. Padova 42 (1969), 15-26. | Zbl 0241.46033

[00009] [10] A. Pełczyński and M. Wojciechowski, Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm, Studia Math. 107 (1993), 61-100. | Zbl 0811.46028

[00010] [11] S. Poornima, An embedding theorem for the Sobolev space W1,1, Bull. Sci. Math. 107 (1983), 253-259. | Zbl 0529.46025

[00011] [12] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. | Zbl 0072.32402

[00012] [13] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971. | Zbl 0232.42007