We investigate the Fourier transforms of functions in the Sobolev spaces . It is proved that for any function the Fourier transform f̂ belongs to the Lorentz space , where . Furthermore, we derive from this result that for any mixed derivative the weighted norm can be estimated by the sum of -norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.
@article{bwmeta1.element.bwnjournal-article-smv125i1p67bwm, author = {V. Kolyada}, title = {Estimates of Fourier transforms in Sobolev spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {67-74}, zbl = {0896.42008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p67bwm} }
Kolyada, V. Estimates of Fourier transforms in Sobolev spaces. Studia Mathematica, Tome 122 (1997) pp. 67-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p67bwm/
[00000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. | Zbl 0647.46057
[00001] [2] J. Berg and Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
[00002] [3] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Vols. 1, 2, Wiley, 1979.
[00003] [4] J. Bourgain, A Hardy inequality in Sobolev spaces, Vrije University, Brussels, 1981.
[00004] [5] J. Bourgain, Some examples of multipliers in Sobolev spaces, IHES, 1985.
[00005] [6] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276. | Zbl 0181.40301
[00006] [7] W. B. Jurkat and G. Sampson, On maximal rearrangement inequalities for the Fourier transform, Trans. Amer. Math. Soc. 282 (1984), 625-643. | Zbl 0537.42029
[00007] [8] V. I. Kolyada, On embedding of Sobolev spaces, Mat. Zametki 54 (3) (1993), 48-71 (in Russian). | Zbl 0821.46043
[00008] [9] J. Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem. Mat. Padova 42 (1969), 15-26. | Zbl 0241.46033
[00009] [10] A. Pełczyński and M. Wojciechowski, Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm, Studia Math. 107 (1993), 61-100. | Zbl 0811.46028
[00010] [11] S. Poornima, An embedding theorem for the Sobolev space , Bull. Sci. Math. 107 (1983), 253-259. | Zbl 0529.46025
[00011] [12] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. | Zbl 0072.32402
[00012] [13] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971. | Zbl 0232.42007