Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for , we denote by the set of all functions such that , where B(a,r) is the ball centered at a and of radius r, and is the integral mean of f on B(a,r). Let and . In this paper, we characterize . The following are examples of our results. , 0≤β < α < 1, , 1 < p < ∞, etc.
@article{bwmeta1.element.bwnjournal-article-smv125i1p35bwm, author = {Eiichi Nakai}, title = {Pointwise multipliers on weighted BMO spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {35-56}, zbl = {0874.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p35bwm} }
Nakai, Eiichi. Pointwise multipliers on weighted BMO spaces. Studia Mathematica, Tome 122 (1997) pp. 35-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p35bwm/
[00000] [1] H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), 135-153. | Zbl 0578.42016
[00001] [2] S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 105 (1989), 950-960. | Zbl 0706.42015
[00002] [3] R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. | Zbl 0224.43006
[00003] [4] R. R. Coifman et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00004] [5] Y. Gotoh, On multipliers for on general domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 339-354.
[00005] [6] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196. | Zbl 0341.43005
[00006] [7] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. | Zbl 0102.04302
[00007] [8] P. G. Lemarié, Algèbres d'opérateurs et semi-groupes de Poisson sur un espace de nature homogène, Publ. Math. Orsay 84-3 (1984). | Zbl 0598.58045
[00008] [9] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. | Zbl 0431.46018
[00009] [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016
[00010] [11] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106. | Zbl 0243.44003
[00011] [12] E. Nakai, On the restriction of functions of bounded mean oscillation to the lower dimensional space, Arch. Math. (Basel) 43 (1984), 519-529. | Zbl 0586.46021
[00012] [13] E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 (1993), 105-119. | Zbl 0812.42008
[00013] [14] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218. | Zbl 0546.42019
[00014] [15] E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Math. Japon. 46 (1997), to appear. | Zbl 0884.42010
[00015] [16] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1965), 593-608. | Zbl 0199.44303
[00016] [17] D. A. Stegenga, Bounded Toeplitz operators on and applications of the duality between and the functions of bounded mean oscillation, Amer. Math. 98 (1976), 573-589. | Zbl 0335.47018
[00017] [18] K. Yabuta, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 117 (1993), 737-744. | Zbl 0779.42006