Pointwise multipliers on weighted BMO spaces
Nakai, Eiichi
Studia Mathematica, Tome 122 (1997), p. 35-56 / Harvested from The Polish Digital Mathematics Library

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for ϕ:X×++, we denote by bmoϕ,p(X) the set of all functions fLlocp(X) such that supaX,r>01/ϕ(a,r)(1/μ(B(a,r))ʃB(a,r)|f(x)-fB(a,r)|pdμ)1/p<, where B(a,r) is the ball centered at a and of radius r, and fB(a,r) is the integral mean of f on B(a,r). Let bmoϕ(X)=bmoϕ,1(X) and bmo(X)=bmo1,1(X). In this paper, we characterize PWM(bmoϕ1,p1(X),bmoϕ2,p2(X)). The following are examples of our results. PWM(bmo(log(1/r))-α(n),bmo(log(1/r))-β(n))=bmo(log(1/r))α-β-1(n), 0≤β < α < 1, PWM(bmo(log(1/r))-1(n),bmo(n))=bmo(loglog(1/r))-1(n), PWM(bmo(n),bmolog(|a|+r+1/r),p(n))=bmo(n), 1 < p < ∞, etc.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216420
@article{bwmeta1.element.bwnjournal-article-smv125i1p35bwm,
     author = {Eiichi Nakai},
     title = {Pointwise multipliers on weighted BMO spaces},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {35-56},
     zbl = {0874.42009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p35bwm}
}
Nakai, Eiichi. Pointwise multipliers on weighted BMO spaces. Studia Mathematica, Tome 122 (1997) pp. 35-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p35bwm/

[00000] [1] H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), 135-153. | Zbl 0578.42016

[00001] [2] S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 105 (1989), 950-960. | Zbl 0706.42015

[00002] [3] R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. | Zbl 0224.43006

[00003] [4] R. R. Coifman et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[00004] [5] Y. Gotoh, On multipliers for BMOϕ on general domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 339-354.

[00005] [6] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196. | Zbl 0341.43005

[00006] [7] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. | Zbl 0102.04302

[00007] [8] P. G. Lemarié, Algèbres d'opérateurs et semi-groupes de Poisson sur un espace de nature homogène, Publ. Math. Orsay 84-3 (1984). | Zbl 0598.58045

[00008] [9] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. | Zbl 0431.46018

[00009] [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016

[00010] [11] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106. | Zbl 0243.44003

[00011] [12] E. Nakai, On the restriction of functions of bounded mean oscillation to the lower dimensional space, Arch. Math. (Basel) 43 (1984), 519-529. | Zbl 0586.46021

[00012] [13] E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 (1993), 105-119. | Zbl 0812.42008

[00013] [14] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218. | Zbl 0546.42019

[00014] [15] E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Math. Japon. 46 (1997), to appear. | Zbl 0884.42010

[00015] [16] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1965), 593-608. | Zbl 0199.44303

[00016] [17] D. A. Stegenga, Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation, Amer. Math. 98 (1976), 573-589. | Zbl 0335.47018

[00017] [18] K. Yabuta, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 117 (1993), 737-744. | Zbl 0779.42006