In their celebrated paper [3], Burkholder, Gundy, and Silverstein used Brownian motion to derive a maximal function characterization of spaces for 0 < p < ∞. In the present paper, we show that the methods in [3] extend to higher dimensions and yield a dimension-free weak type (1,1) estimate for a conjugate function on the N-dimensional torus.
@article{bwmeta1.element.bwnjournal-article-smv125i1p13bwm, author = {Nakhl\'e Asmar and Stephen Montgomery-Smith}, title = {On a weak type (1,1) inequality for a maximal conjugate function}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {13-21}, zbl = {0896.42015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p13bwm} }
Asmar, Nakhlé; Montgomery-Smith, Stephen. On a weak type (1,1) inequality for a maximal conjugate function. Studia Mathematica, Tome 122 (1997) pp. 13-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv125i1p13bwm/
[00000] [1] N. Asmar and S. J. Montgomery-Smith, Hahn's Embedding Theorem for orders and analysis on groups with ordered dual groups, Colloq. Math. 70 (1996), 235-252. | Zbl 0855.43001
[00001] [2] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304. | Zbl 0223.60021
[00002] [3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal characterization of the class , Trans. Amer. Math. Soc. 157 (1971), 137-153. | Zbl 0223.30048
[00003] [4] J. L. Doob, Stochastic Processes, Wiley Publ. Math. Statist., Wiley, New York, 1953.
[00004] [5] J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121. | Zbl 0059.12205
[00005] [6] H. Helson, Conjugate series in several variables, Pacific J. Math. 9 (1959), 513-523. | Zbl 0088.05002
[00006] [7] K. E. Petersen, Brownian Motion, Hardy Spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Ser. 28, Cambridge Univ. Press, 1977. | Zbl 0363.60004
[00007] [8] A. Zygmund, Trigonometric Series, 2nd ed., 2 vols., Cambridge Univ. Press, 1959. | Zbl 0085.05601
[00008] [8] A. Zygmund, Trigonometric Series, 2nd ed., 2 vols., Cambridge Univ. Press, 1959. | Zbl 0085.05601