For any subanalytic -Whitney field (k finite), we construct its subanalytic -extension to . Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.
@article{bwmeta1.element.bwnjournal-article-smv124i3p269bwm, author = {Krzysztof Kurdyka and Wies\l aw Paw\l ucki}, title = {Subanalytic version of Whitney's extension theorem}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {269-280}, zbl = {0955.32006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i3p269bwm} }
Kurdyka, Krzysztof; Pawłucki, Wiesław. Subanalytic version of Whitney's extension theorem. Studia Mathematica, Tome 122 (1997) pp. 269-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i3p269bwm/
[00000] [1] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. | Zbl 0674.32002
[00001] [2] E. Bierstone and G. W. Schwarz, Continuous linear division and extension of functions, Duke Math. J. 50 (1983), 233-271. | Zbl 0521.32008
[00002] [3] J. Bochnak, M. Coste et M.-F. Roy, Géométrie algébrique réelle, Springer, 1987. | Zbl 0633.14016
[00003] [4] Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. | Zbl 0435.32006
[00004] [5] Z. Denkowska, Sur le théorème du complémentaire pour les ensembles sous-analytiques, ibid., 537-539. | Zbl 0457.32003
[00005] [6] A. M. Gabrielov, Projections of semianalytic sets, Funktsional. Anal. i Prilozhen. 2 (4) (1968), 18-30 (in Russian).
[00006] [7] M. Gromov, Entropy, homology and semialgebraic geometry [after Y. Yomdin], Séminaire Bourbaki, 38ème année, 1985-86, no. 663; Astérisque 145-146 (1987), 225-240.
[00007] [8] H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra in Honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 453-493.
[00008] [9] K. Kurdyka, Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 133-156. | Zbl 0619.32007
[00009] [10] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Proc. Conference Real Algebraic Geometry - Rennes 1991, Lecture Notes in Math. 1524, Springer, 1992, 316-322. | Zbl 0779.32006
[00010] [11] S. Łojasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1964.
[00011] [12] S. Łojasiewicz, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier (Grenoble) 43 (1993), 1575-1595. | Zbl 0803.32002
[00012] [13] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, 1966.
[00013] [14] A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier (Grenoble) 38 (4) (1988), 189-213. | Zbl 0631.32006
[00014] [15] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. Ecole Norm. Sup. 27 (1994), 661-696. | Zbl 0819.32007
[00015] [16] J. C. Tougeron, Idéaux de Fonctions Différentiables, Springer, 1972. | Zbl 0251.58001
[00016] [17] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. | Zbl 0889.03025
[00017] [18] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. | Zbl 0008.24902
[00018] [19] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35 (1934), 482-485. | Zbl 60.0217.03