We introduce a new equivalence relation between unitary operators on separable Hilbert spaces and discuss a possibility to have in each equivalence class a measure-preserving transformation.
@article{bwmeta1.element.bwnjournal-article-smv124i3p259bwm, author = {Krzysztof Fr\k aczek}, title = {Cyclic space isomorphism of unitary operators}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {259-267}, zbl = {0893.28012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i3p259bwm} }
Frączek, Krzysztof. Cyclic space isomorphism of unitary operators. Studia Mathematica, Tome 122 (1997) pp. 259-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i3p259bwm/
[00000] [1] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian); English transl.: Math. USSR-Sb. 64 (1989), 305-317.
[00001] [2] F. Blanchard and M. Lemańczyk, Measure preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294. | Zbl 0793.28012
[00002] [3] N. Dunford and T. Schwartz, Linear Operators, Wiley-Interscience, 1971.
[00003] [4] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174. | Zbl 0830.28009
[00004] [5] J. Kwiatkowski Jr. and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II, Studia Math. 116 (1995), 207-215. | Zbl 0857.28012
[00005] [6] M. Lemańczyk, Toeplitz -extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.
[00006] [7] J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406. | Zbl 0515.28010
[00007] [8] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math. 1294, Springer, Berlin, 1987.
[00008] [9] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press., Cambridge, 1981. | Zbl 0449.28016
[00009] [10] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. | Zbl 0519.28008
[00010] [11] E. A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88. | Zbl 0614.28012