Besov spaces on symmetric manifolds—the atomic decomposition
Skrzypczak, Leszek
Studia Mathematica, Tome 122 (1997), p. 215-238 / Harvested from The Polish Digital Mathematics Library

We give the atomic decomposition of the inhomogeneous Besov spaces defined on symmetric Riemannian spaces of noncompact type. As an application we get a theorem of Bernstein type for the Helgason-Fourier transform.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216410
@article{bwmeta1.element.bwnjournal-article-smv124i3p215bwm,
     author = {Leszek Skrzypczak},
     title = {Besov spaces on symmetric manifolds---the atomic decomposition},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {215-238},
     zbl = {0896.46024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i3p215bwm}
}
Skrzypczak, Leszek. Besov spaces on symmetric manifolds—the atomic decomposition. Studia Mathematica, Tome 122 (1997) pp. 215-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i3p215bwm/

[00000] [1] J.-P. Anker, Lp-Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. 132 (1990), 597-628. | Zbl 0741.43009

[00001] [2] J.-P. Anker, The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan, J. Funct. Anal. 96 (1991), 331-349. | Zbl 0732.43006

[00002] [3] H. Q. Bui, Representation theorems and atomic decomposition of Besov spaces, Math. Nachr. 132 (1987), 301-311. | Zbl 0639.46037

[00003] [4] M. Eguchi, Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces, J. Funct. Anal. 34 (1979), 164-216.

[00004] [5] H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, in: Function Spaces and Applications, Proc. Conf. Lund 1986, Lecture Notes in Math. 1302, Springer, 1988, 52-73. | Zbl 0658.22007

[00005] [6] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307-340; II, Monatsh. Math. 108 (1989), 129-148. | Zbl 0691.46011

[00006] [7] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. | Zbl 0551.46018

[00007] [8] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.

[00008] [9] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991. | Zbl 0757.42006

[00009] [10] R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergeb. Math. Grenzgeb. 101, Springer, 1988. | Zbl 0675.43004

[00010] [11] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. | Zbl 0451.53038

[00011] [12] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, 1984. | Zbl 0543.58001

[00012] [13] S. Helgason, The surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math. 98 (1973), 451-480. | Zbl 0274.43013

[00013] [14] T. Kawazoe, Atomic Hardy spaces on semisimple Lie groups, in: Non-Commutative Harmonic Analysis and Lie Groups, Proc. Conf. Marseille 1985, Lecture Notes in Math. 1243, Springer, 1987, 189-197.

[00014] [15] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. | Zbl 0431.46019

[00015] [16] L. Skrzypczak, Some equivalent norms in Sobolev and Besov spaces on symmetric manifolds, J. London Math. Soc. 53 (1996), 569-581. | Zbl 0857.46023

[00016] [17] L. Skrzypczak, Vector-valued Fourier multipliers on symmetric spaces of the noncompact type, Monatsh. Math. 119 (1995), 99-123. | Zbl 0828.43009

[00017] [18] H. Triebel, Atomic decomposition of Fps,q spaces. Applications to exotic pseudodifferential and Fourier integral operators, Math. Nachr. 144 (1989), 189-222. | Zbl 0766.46020

[00018] [19] H. Triebel, How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups?, Z. Anal. Anwendungen 7 (1988), 471-480. | Zbl 0685.46020

[00019] [20] H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), 300-337. | Zbl 0664.46026

[00020] [21] H. Triebel, Theory of Function Spaces II, Birkhäuser, 1992.