Boundary values of zero-smooth Besov analytic functions in the unit ball of are investigated. Bounded Besov functions with prescribed lower semicontinuous modulus are constructed. Correction theorems for continuous Besov functions are proved. An approximation problem on great circles is studied.
@article{bwmeta1.element.bwnjournal-article-smv124i2p179bwm, author = {Evgueni Doubtsov}, title = {Approximation on the sphere by Besov analytic functions}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {179-192}, zbl = {0883.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p179bwm} }
Doubtsov, Evgueni. Approximation on the sphere by Besov analytic functions. Studia Mathematica, Tome 122 (1997) pp. 179-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p179bwm/
[00000] [A1] A. B. Aleksandrov, The existence of inner functions in the ball, Mat. Sb. 118 (160) (1982), 147-163 (in Russian); English transl.: Math. USSR-Sb. 46 (1983), 143-159. | Zbl 0503.32001
[00001] [A2] A. B. Aleksandrov, Inner functions on compact spaces, Funktsional. Anal. i Prilozhen. 18 (2) (1984), 1-13 (in Russian); English transl.: Funct. Anal. Appl. 18 (2) (1984), 87-98.
[00002] [A3] A. B. Aleksandrov, Function theory in the ball, in: Itogi Nauki i Tekhniki 8, VINITI, Moscow, 1985, 115-190 (in Russian); English transl.: G. M. Khenkin and A. G. Vitushkin (eds.), Encyclopaedia Math. Sci. 8 (Several Complex Variables II), Springer, Berlin, 1994, 107-178.
[00003] [BB] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).
[00004] [Do] E. Doubtsov, Corrected outer functions, Proc. Amer. Math. Soc., to appear.
[00005] [Du1] Y. Dupain, Gradients des fonctions intérieures dans la boule unité de , Math. Z. 193 (1986), 85-94. | Zbl 0583.32013
[00006] [Du2] Y. Dupain, Fonctions intérieures dans la boule unité de dont les fonctions traces sont aussi intérieures, ibid. 198 (1988), 191-206.
[00007] [KM] B. Korenblum and J. E. McCarthy, The range of Toeplitz operators on the ball, Rev. Mat. Iberoamericana 12 (1996), 47-61. | Zbl 0941.47024
[00008] [N] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
[00009] [R1] W. Rudin, Function Theory in the Unit Ball of , Grundlehren Math. Wiss. 241, Springer, Berlin, 1980.
[00010] [R2] W. Rudin, Inner functions in the unit ball of , J. Funct. Anal. 50 (1983), 100-126. | Zbl 0554.32002
[00011] [R3] W. Rudin, New Constructions of Functions Holomorphic in the Unit Ball of , CBMS Regional Conf. Ser. in Math. 63, Amer. Math. Soc., Providence, R.I., 1986.
[00012] [Ta] M. Tamm, Sur l'image par une fonction holomorphe bornée du bord d'un domaine pseudoconvexe, C. R. Acad. Sci. Paris 294 (1982), 537-540. | Zbl 0497.32003
[00013] [To] B. Tomaszewski, Interpolation by Lipschitz holomorphic functions, Ark. Mat. 23 (1985), 327-338. | Zbl 0587.32009