We consider the following problem: find on a plurisubharmonic function with a given order function. In particular, we prove that any positive ambiguous function on which is constant outside a polar set is the order function of a plurisubharmonic function.
@article{bwmeta1.element.bwnjournal-article-smv124i2p161bwm, author = {Halil Celik and Evgeny Poletsky}, title = {Order functions of plurisubharmonic functions}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {161-171}, zbl = {0883.32015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p161bwm} }
Celik, Halil; Poletsky, Evgeny. Order functions of plurisubharmonic functions. Studia Mathematica, Tome 122 (1997) pp. 161-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p161bwm/
[00000] [1] U. Cegrell and J. Thorbiörnson, Extremal plurisubharmonic functions, Ann. Polon. Math. 63 (1996), 63-69. | Zbl 0924.31005
[00001] [2] H. I. Celik, Pointwise singularities of plurisubharmonic functions, Ph.D. thesis, Syracuse Univ., 1996.
[00002] [3] H. I. Celik and E. A. Poletsky, Fundamental solutions of the complex Monge-Ampère equation, Ann. Polon. Math., to appear. | Zbl 0892.32013
[00003] [4] J. P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, Plenum Press, New York, 1993, 115-193. | Zbl 0792.32006
[00004] [5] L. Hörmander and R. Sigurdsson, Limit sets of plurisubharmonic functions, Math. Scand. 65 (1989), 308-320. | Zbl 0718.32016
[00005] [6] C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), 295-304. | Zbl 0416.32007
[00006] [7] C. O. Kiselman, Plurisubharmonic functions and their singularities, in: Complex Potential Theory, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 439, Kluwer, Dordrecht, 1994, 273-323. | Zbl 0810.31007
[00007] [8] N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972.