For any uniformly closed subalgebra A of C(K) for a compact Hausdorff space K without isolated points and , we show that every complete norm on A which makes continuous the multiplication by is equivalent to provided that has no interior points whenever λ lies in ℂ. Actually, these assertions are equivalent if A = C(K).
@article{bwmeta1.element.bwnjournal-article-smv124i2p155bwm, author = {A. Villena}, title = {Operators determining the complete norm topology of C(K)}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {155-160}, zbl = {0895.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p155bwm} }
Villena, A. Operators determining the complete norm topology of C(K). Studia Mathematica, Tome 122 (1997) pp. 155-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p155bwm/
[00000] [1] B. E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537-539. | Zbl 0172.41004
[00001] [2] A. Rodríguez, The uniqueness of the complete norm topology in complete normed nonassociative algebras, J. Funct. Anal. 60 (1985), 1-15. | Zbl 0602.46055
[00002] [3] Z. Semadeni, Banach Spaces of Continuous Functions, I, Polish Sci. Publ., 1971.
[00003] [4] A. M. Sinclair, Automatic Continuity of Linear Operators, Cambridge University Press, 1976. | Zbl 0313.47029