There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous methods allow us to obtain K-functional formulas in terms of the maximal function for couples of weighted -spaces.
@article{bwmeta1.element.bwnjournal-article-smv124i2p107bwm, author = {Irina Asekritova and Natan Krugljak and Lech Maligranda and Lars-Erik Persson}, title = {Distribution and rearrangement estimates of the maximal function and interpolation}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {107-132}, zbl = {0888.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p107bwm} }
Asekritova, Irina; Krugljak, Natan; Maligranda, Lech; Persson, Lars-Erik. Distribution and rearrangement estimates of the maximal function and interpolation. Studia Mathematica, Tome 122 (1997) pp. 107-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p107bwm/
[00000] [1] I. U. Asekritova, On the K-functional of the pair , in: Theory of Functions of Several Real Variables, Yaroslavl’, 1980, 3-32 (in Russian).
[00001] [2] C. Bennett and R. Sharpley, Weak type inequalities for and BMO, in: Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 201-229. | Zbl 0423.30026
[00002] [3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. | Zbl 0647.46057
[00003] [4] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. | Zbl 0344.46071
[00004] [5] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. | Zbl 0047.10201
[00005] [6] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[00006] [7] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116. | Zbl 56.0264.02
[00007] [8] C. Herz, The Hardy-Littlewood maximal theorem, in: Symposium on Harmonic Analysis, University of Warwick, 1968, 1-27.
[00008] [9] L. Maligranda, The K-functional for symmetric spaces, in: Lecture Notes in Math. 1070, Springer, 1984, 169-182.
[00009] [10] F. Riesz, Sur un théorème de maximum de MM. Hardy et Littlewood, J. London Math. Soc. 7 (1932), 10-13.
[00010] [11] P. Sjögren, A remark on the maximal function for measures in ℝ, Amer. J. Math. 105 (1983), 1231-1233.
[00011] [12] E. M. Stein, Note on the class LlogL, Studia Math. 32 (1969), 305-310. | Zbl 0182.47803
[00012] [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[00013] [14] A. M. Vargas, On the maximal function for rotation invariant measures in ℝ, Studia Math. 110 (1994), 9-17. | Zbl 0818.42009
[00014] [15] N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18. | Zbl 0021.23501
[00015] [16] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, Cambridge, 1959. | Zbl 0085.05601