Reflexivity of isometries
Li, Wing-Suet ; McCarthy, John
Studia Mathematica, Tome 122 (1997), p. 101-105 / Harvested from The Polish Digital Mathematics Library

We prove that any set of commuting isometries on a separable Hilbert space is reflexive.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216400
@article{bwmeta1.element.bwnjournal-article-smv124i2p101bwm,
     author = {Wing-Suet Li and John McCarthy},
     title = {Reflexivity of isometries},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {101-105},
     zbl = {0887.47007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p101bwm}
}
Li, Wing-Suet; McCarthy, John. Reflexivity of isometries. Studia Mathematica, Tome 122 (1997) pp. 101-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p101bwm/

[00000] [1] H. Bercovici, A factorization theorem with applications to invariant subspaces and the reflexivity of isometries, preprint. | Zbl 0833.47003

[00001] [2] H. Bercovici and W. S. Li, Reflexivity of certain pairs of commuting isometries, preprint. | Zbl 0872.47002

[00002] [3] J. B. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence, 1991. | Zbl 0743.47012

[00003] [4] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512. | Zbl 0213.14304

[00004] [5] D. Hadwin and E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23. | Zbl 0483.47023

[00005] [6] K. Horák and V. Müller, On commuting isometries, Czechoslovak Math. J. 43 (118) (1993), 373-382. | Zbl 0811.47040

[00006] [7] J. E. McCarthy, Reflexivity of subnormal operators, Pacific J. Math. 161 (1993), 359-370. | Zbl 0792.47027

[00007] [8] M. Ptak, Reflexivity of pairs of isometries, Studia Math. 83 (1986), 47-55.

[00008] [9] M. Ptak, Erratum to the paper "Reflexivity of pairs of isometries", ibid. 103 (1992), 221-223.

[00009] [10] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1996), 511-517. | Zbl 0171.33703