Two-sided estimates of the approximation numbers of certain Volterra integral operators
Edmunds, D. ; Evans, W. ; Harris, D.
Studia Mathematica, Tome 122 (1997), p. 59-80 / Harvested from The Polish Digital Mathematics Library

We consider the Volterra integral operator T:Lp(+)Lp(+) defined by (Tf)(x)=v(x)ʃ0xu(t)f(t)dt. Under suitable conditions on u and v, upper and lower estimates for the approximation numbers an(T) of T are established when 1 < p < ∞. When p = 2 these yield limnnan(T)=π-1ʃ0|u(t)v(t)|dt. We also provide upper and lower estimates for the α and weak α norms of (an(T)) when 1 < α < ∞.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216397
@article{bwmeta1.element.bwnjournal-article-smv124i1p59bwm,
     author = {D. Edmunds and W. Evans and D. Harris},
     title = {Two-sided estimates of the approximation numbers of certain Volterra integral operators},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {59-80},
     zbl = {0897.47043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i1p59bwm}
}
Edmunds, D.; Evans, W.; Harris, D. Two-sided estimates of the approximation numbers of certain Volterra integral operators. Studia Mathematica, Tome 122 (1997) pp. 59-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i1p59bwm/

[00000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988. | Zbl 0647.46057

[00001] [2] M. Birman and M. Z. Solomyak, Estimates for the singular numbers of integral operators, Uspekhi Mat. Nauk 32 (1) (1977), 17-82 (in Russian); English transl.: Russian Math. Surveys 32 (1977).

[00002] [3] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987. | Zbl 0628.47017

[00003] [4] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. (2) 37 (1988), 471-489. | Zbl 0658.47049

[00004] [5] D. E. Edmunds and V. D. Stepanov, On the singular numbers of certain Volterra integral operators, J. Funct. Anal. 134 (1995), 222-246. | Zbl 0840.45013

[00005] [6] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1952. | Zbl 0047.05302

[00006] [7] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Boston, 1989.

[00007] [8] J. Newman and M. Solomyak, Two-sided estimates of singular values for a class of integral operators on the semi-axis, Integral Equations Operator Theory 20 (1994), 335-349. | Zbl 0817.47024

[00008] [9] K. Nowak, Schatten ideal behavior of a generalized Hardy operator, Proc. Amer. Math. Soc. 118 (1993), 479-483. | Zbl 0791.47024