A linear functional F on a Banach algebra A is almost multiplicative if |F(ab) - F(a)F(b)| ≤ δ∥a∥ · ∥b∥ for a,b ∈ A, for a small constant δ. An algebra is called functionally stable or f-stable if any almost multiplicative functional is close to a multiplicative one. The question whether an algebra is f-stable can be interpreted as a question whether A lacks an almost corona, that is, a set of almost multiplicative functionals far from the set of multiplicative functionals. In this paper we discuss f-stability for general uniform algebras; we prove that any uniform algebra with one generator as well as some algebras of the form R(K), K ⊂ ℂ, and A(Ω), , are f-stable. We show that, for a Blaschke product B, the quotient algebra is f-stable if and only if B is a product of finitely many interpolating Blaschke products.
@article{bwmeta1.element.bwnjournal-article-smv124i1p37bwm, author = {Krzysztof Jarosz}, title = {Almost multiplicative functionals}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {37-58}, zbl = {0897.46043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i1p37bwm} }
Jarosz, Krzysztof. Almost multiplicative functionals. Studia Mathematica, Tome 122 (1997) pp. 37-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i1p37bwm/
[00000] [1] E. Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math. 11 (1961), 777-783. | Zbl 0104.09002
[00001] [2] J. Bruna and J. M. Ortega, Closed finitely generated ideals in algebras of holomorphic functions and smooth to the boundary in strictly pseudoconvex domains, Math. Ann. 268 (1984), 137-157. | Zbl 0533.32002
[00002] [3] P. Colwell, Blaschke Products, The University of Michigan Press, 1985.
[00003] [4] J. B. Conway, Functions of One Complex Variable, Grad. Texts in Math. 11, Springer, 1986.
[00004] [5] J. B. Conway, Functions of One Complex Variable II, Grad. Texts in Math. 159, Springer, 1995.
[00005] [6] R. Frankfurt, Weak* generators of quotient algebras of , J. Math. Anal. Appl. 73 (1980), 52-64. | Zbl 0482.46036
[00006] [7] T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.
[00007] [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981. | Zbl 0469.30024
[00008] [9] P. Gorkin, Decompositions of the maximal ideal space of , Trans. Amer. Math. Soc. 282 (1984), 33-44. | Zbl 0545.30040
[00009] [10] C. Guillory and K. Izuchi, Interpolating Blaschke products and nonanalytic sets, Complex Variables Theory Appl. 23 (1993), 163-175. | Zbl 0795.30031
[00010] [11] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104. | Zbl 0412.46017
[00011] [12] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962. | Zbl 0117.34001
[00012] [13] K. Jarosz, Into isomorphisms of spaces of continuous functions, Proc. Amer. Math. Soc. 90 (1984), 373-377. | Zbl 0535.46013
[00013] [14] K. Jarosz, Perturbations of Banach Algebras, Lecture Notes in Math. 1120, Springer, 1985. | Zbl 0557.46029
[00014] [15] K. Jarosz, Small perturbations of algebras of analytic functions on polydiscs, in: K. Jarosz (ed.), Function Spaces, Marcel Dekker, 1991, 223-240. | Zbl 0780.46034
[00015] [16] K. Jarosz, Ultraproducts and small bound perturbations, Pacific J. Math. 148 (1991), 81-88. | Zbl 0755.46005
[00016] [17] B. E. Johnson, Approximately multiplicative functionals, J. London Math. Soc. 34 (1986), 489-510. | Zbl 0625.46059
[00017] [18] A. Kerr-Lawson, A filter description of the homeomorphisms of , Canad. J. Math. 17 (1965), 734-757. | Zbl 0128.34702
[00018] [19] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, ibid. 21 (1969), 531-534. | Zbl 0206.08702
[00019] [20] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, 1982. | Zbl 0471.32008
[00020] [21] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611. | Zbl 0439.47022
[00021] [22] P. McKenna, Discrete Carleson measures and some interpolating problems, Michigan Math. J. 24 (1977), 311-319. | Zbl 0391.30023
[00022] [23] A. Nicolau, Finite products of interpolating Blaschke products, J. London Math. Soc. 50 (1994), 520-531. | Zbl 0819.30019
[00023] [24] R. Rochberg, Deformation of uniform algebras on Riemann surfaces, Pacific J. Math. 121 (1986), 135-181. | Zbl 0591.46046
[00024] [25] D. Sarason, The Shilov and Bishop decompositions of , in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. II, Wadsworth, Belmont, Calif., 1983, 461-474.
[00025] [26] G. E. Shilov, On rings of functions with uniform convergence, Ukrain. Mat. Zh. 3 (1951), 404-411 (in Russian). | Zbl 0045.21204
[00026] [27] S. J. Sidney, Are all uniform algebras AMNM?, preprint, Institut Fourier, 1995.
[00027] [28] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, Belmont, Calif., 1971. | Zbl 0286.46049
[00028] [29] I. Suciu, Function Algebras, Noordhoff, Leyden, 1975.
[00029] [30] V. Tolokonnikov, Extremal functions of the Nevanlinna-Pick problem and Douglas algebras, Studia Math. 105 (1993), 151-158. | Zbl 0816.30037