We show that for a unitary operator U on , where X is a compact manifold of class , , and μ is a finite Borel measure on X, there exists a function that realizes the maximal spectral type of U.
@article{bwmeta1.element.bwnjournal-article-smv124i1p1bwm,
author = {Krzysztof Fr\k aczek},
title = {On a function that realizes the maximal spectral type},
journal = {Studia Mathematica},
volume = {122},
year = {1997},
pages = {1-7},
zbl = {0892.47022},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i1p1bwm}
}
Frączek, Krzysztof. On a function that realizes the maximal spectral type. Studia Mathematica, Tome 122 (1997) pp. 1-7. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i1p1bwm/
[00000] [1] V. M. Alexeyev, Existence of a bounded function of the maximal spectral type, Ergodic Theory Dynam. Systems 2 (1982), 259-261.
[00001] [2] S. Bochner and W. T. Martin, Several Complex Variables, Princeton Univ. Press, Princeton, 1948. | Zbl 0041.05205
[00002] [3] N. Dunford and T. Schwartz, Linear Operators, Wiley-Interscience, 1971.
[00003] [4] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. 68 (1958), 460-472. | Zbl 0108.07804
[00004] [5] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981. | Zbl 0449.28016