The splitting spectrum differs from the Taylor spectrum
Müller, V.
Studia Mathematica, Tome 122 (1997), p. 291-294 / Harvested from The Polish Digital Mathematics Library

We construct a pair of commuting Banach space operators for which the splitting spectrum is different from the Taylor spectrum.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216394
@article{bwmeta1.element.bwnjournal-article-smv123i3p291bwm,
     author = {V. M\"uller},
     title = {The splitting spectrum differs from the Taylor spectrum},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {291-294},
     zbl = {0886.47004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p291bwm}
}
Müller, V. The splitting spectrum differs from the Taylor spectrum. Studia Mathematica, Tome 122 (1997) pp. 291-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p291bwm/

[00000] [1] J. Eschmeier, Analytic spectral mapping theorems for joint spectra, in: Operators in Indefinite Metric Spaces, Scattering Theory and Other Topics (Bucharest, 1985), H. Helson, B. Sz.-Nagy, F. H. Vasilescu and D. Voiculescu (eds.), Oper. Theory Adv. Appl. 24, Birkhäuser, Basel, 1987, 167-181.

[00001] [2] R. Harte, Invertibility, singularity and Joseph L. Taylor, Proc. Roy. Irish Acad. Sect. A 81 (1981), 71-79.

[00002] [3] V. Kordula and V. Müller, Vasilescu-Martinelli formula for operators in Banach spaces, Studia Math. 113 (1995), 127-139. | Zbl 0819.47019

[00003] [4] M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65-90. | Zbl 0491.47008

[00004] [5] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. | Zbl 0233.47024