Standard exact projective resolutions relative to a countable class of Fréchet spaces
Domański, P. ; Krone, J. ; Vogt, D.
Studia Mathematica, Tome 122 (1997), p. 275-290 / Harvested from The Polish Digital Mathematics Library

We will show that for each sequence of quasinormable Fréchet spaces (En) there is a Köthe space λ such that Ext1(λ(A),λ(A)=Ext1(λ(A),En)=0 and there are exact sequences of the form ...λ(A)λ(A)λ(A)λ(A)En0. If, for a fixed ℕ, En is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form 0λ(A)λ(A)En0. The result has some applications in the theory of the functor Ext1 in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216393
@article{bwmeta1.element.bwnjournal-article-smv123i3p275bwm,
     author = {P. Doma\'nski and J. Krone and D. Vogt},
     title = {Standard exact projective resolutions relative to a countable class of Fr\'echet spaces},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {275-290},
     zbl = {0910.46001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p275bwm}
}
Domański, P.; Krone, J.; Vogt, D. Standard exact projective resolutions relative to a countable class of Fréchet spaces. Studia Mathematica, Tome 122 (1997) pp. 275-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p275bwm/

[00000] [A1] H. Apiola, Every nuclear Fréchet space is a quotient of a Köthe Schwartz space, Arch. Math. (Basel) 35 (1980), 559-573. | Zbl 0437.46004

[00001] [A2] H. Apiola, Characterization of subspaces and quotients of nuclear Lf(α,)-spaces, Compositio Math. 50 (1983), 165-181.

[00002] [D1] P. Domański, On the projective LB-spaces, Note Mat. (Lecce), Spec. Vol. to the memory of G. Köthe, 12 (1992), 43-48. | Zbl 0806.46004

[00003] [DV] P. Domański and D. Vogt, A splitting theorem for the space of smooth functions, preprint, 1994.

[00004] [G1] V. A. Gejler, On extending and lifting continuous linear mappings in topological vector spaces, Studia Math. 62 (1978), 295-303. | Zbl 0398.46007

[00005] [G2] V. A. Gejler, On projective objects in the category of locally convex spaces, Funktsional. Anal. i Prilozhen. 6 (1972), 79-80 (in Russian).

[00006] [J] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1980.

[00007] [K] G. Köthe, Topological Vector Spaces, Springer, Berlin, 1969. | Zbl 0179.17001

[00008] [K1] G. Köthe, Hebbare lokalkonvexe Räume, Math. Ann. 165 (1966), 181-195. | Zbl 0141.11605

[00009] [Kr] J. Krone, Zur topologischen Charakterisierung von Unter- und Quotientenräumen spezieller nuklearer Kötheräume mit der Splittingmethode, Diplomarbeit, Wuppertal, 1984.

[00010] [KrV] J. Krone and D. Vogt, The splitting relation for Köthe spaces, Math. Z. 190 (1985), 387-400. | Zbl 0586.46005

[00011] [MV1] R. Meise and D. Vogt, A characterization of quasinormable Fréchet spaces, Math. Nachr. 122 (1985), 141-150. | Zbl 0583.46002

[00012] [MV] R. Meise and D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992.

[00013] [P1] V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1) (1971), 3-66 (in Russian); English transl.: Russian Math. Surveys 26 (1) (1971), 1-64.

[00014] [P2] V. P. Palamodov, Functor of projective limit in the category of topological vector spaces, Mat. Sb. 75 (1968), 567-603 (in Russian). | Zbl 0175.41801

[00015] [V1] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. | Zbl 0337.46015

[00016] [V2] D. Vogt, Subspaces and quotient spaces of s, in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1977, 167-187.

[00017] [V3] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270. | Zbl 0539.46009

[00018] [V4] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. L. Zapata (ed.), Lecture Notes Pure Appl. Math. 83, Marcel Dekker, New York, 1983, 405-443.

[00019] [V5] D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1984, 349-381.

[00020] [V6] D. Vogt, On the functors Ext1(E,F) for Fréchet spaces, Studia Math. 85 (1987), 163-197. | Zbl 0651.46001

[00021] [V7] D. Vogt, On the characterization of subspaces and quotient spaces of stable power series spaces of finite type, Arch. Math. (Basel) 50 (1988), 463-469. | Zbl 0655.46008

[00022] [VW1] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. | Zbl 0464.46010

[00023] [VW2] D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), 63-80. | Zbl 0402.46008

[00024] [VWd] D. Vogt and V. Walldorf, Two results on Fréchet Schwartz spaces, Arch. Math. (Basel) 41 (1993), 459-464. | Zbl 0814.46003

[00025] [W] M. J. Wagner, Jeder nukleare (F)-Raum ist Quotient eines nuklearen Köthe-Raumes, Arch. Math. (Basel) 41 (1983), 169-175. | Zbl 0548.46004