Espaces BMO, inégalités de Paley et multiplicateurs idempotents
Lelièvre, Hubert
Studia Mathematica, Tome 122 (1997), p. 249-274 / Harvested from The Polish Digital Mathematics Library

Generalizing the classical BMO spaces defined on the unit circle with vector or scalar values, we define the spaces BMOψq() and BMOψq(,B), where ψq(x)=exq-1 for x ≥ 0 and q ∈ [1,∞[, and where B is a Banach space. Note that BMOψ1()=BMO() and BMOψ1(,B)=BMO(,B) by the John-Nirenberg theorem. Firstly, we study a generalization of the classical Paley inequality and improve the Blasco-Pełczyński theorem in the vector case. Secondly, we compute the idempotent multipliers of BMOψq(). Pisier conjectured that the supports of idempotent multipliers of Lψq() form a Boolean algebra generated by the periodic parts and the finite parts for 2 < q < ∞. We confirm this conjecture with Lψq() replaced by BMOψq().

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216392
@article{bwmeta1.element.bwnjournal-article-smv123i3p249bwm,
     author = {Hubert Leli\`evre},
     title = {Espaces BMO, in\'egalit\'es de Paley et multiplicateurs idempotents},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {249-274},
     zbl = {0890.42003},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p249bwm}
}
Lelièvre, Hubert. Espaces BMO, inégalités de Paley et multiplicateurs idempotents. Studia Mathematica, Tome 122 (1997) pp. 249-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p249bwm/

[00000] [BP] O. Blasco and A. Pełczyński, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991), 335-367. | Zbl 0744.46039

[00001] [CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[00002] [GM] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979. | Zbl 0439.43001

[00003] [H] H. Helson, Note on harmonic functions, Proc. Amer. Math. Soc. 4 (1953), 686-691. | Zbl 0052.30203

[00004] [Kl] I. Klemes, Idempotent multipliers of H1(T), Canad. J. Math. 39 (1987), 1223-1234. | Zbl 0627.46063

[00005] [L] H. Lelièvre, Espaces BMO et multiplicateurs idempotents, thèse de doctorat de l'Université Paris 6, 1995.

[00006] [Pe] A. Pełczyński, Commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531. | Zbl 0693.46044

[00007] [Pi1] G. Pisier, Les inégalités de Khintchine-Kahane d'après C. Borel, Séminaire sur la géométrie des espaces de Banach 1977-1978, exposé VII, Ecole Polytechnique, Centre de Mathematiques, 1978.

[00008] [Pi2] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726. | Zbl 0468.43008

[00009] [Pi3] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986.

[00010] [Pi4] G. Pisier, Probabilistic methods in the geometry of Banach spaces, in: Probability and Analysis 1985, Lecture Notes in Math. 1206, Springer, 1996, 167-241.