Compact homomorphisms between algebras of analytic functions
Aron, Richard ; Galindo, Pablo ; Lindström, Mikael
Studia Mathematica, Tome 122 (1997), p. 235-247 / Harvested from The Polish Digital Mathematics Library

We prove that every weakly compact multiplicative linear continuous map from H(D) into H(D) is compact. We also give an example which shows that this is not generally true for uniform algebras. Finally, we characterize the spectra of compact composition operators acting on the uniform algebra H(BE), where BE is the open unit ball of an infinite-dimensional Banach space E.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216391
@article{bwmeta1.element.bwnjournal-article-smv123i3p235bwm,
     author = {Richard Aron and Pablo Galindo and Mikael Lindstr\"om},
     title = {Compact homomorphisms between algebras of analytic functions},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {235-247},
     zbl = {0898.46049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p235bwm}
}
Aron, Richard; Galindo, Pablo; Lindström, Mikael. Compact homomorphisms between algebras of analytic functions. Studia Mathematica, Tome 122 (1997) pp. 235-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p235bwm/

[00000] [AAD] R. Alencar, R. M. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. | Zbl 0536.46015

[00001] [ACG] R. M. Aron, B. J. Cole and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93. | Zbl 0717.46031

[00002] [B1] J. Bourgain, H is a Grothendieck space, Studia Math. 75 (1982), 193-226.

[00003] [B2] J. Bourgain, New Banach space properties of the disc algebra and H, Acta Math. 152 (1984), 1-48.

[00004] [BP] A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. | Zbl 0141.32202

[00005] [C] S. Chae, Holomorphy and Calculus in Normed Spaces, Marcel Dekker, 1985. | Zbl 0571.46031

[00006] [CM] J. Cima and A. Matheson, Completely continuous composition operators, Trans. Amer. Math. Soc. 344 (1994), 849-856. | Zbl 0813.47032

[00007] [De] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294. | Zbl 0361.46048

[00008] [Di] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.

[00009] [D] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland, 1981. | Zbl 0484.46044

[00010] [EH] C. Earle and R. Hamilton, A fixed point theorem for holomorphic mappings, in: Global Analysis, Proc. Sympos. Pure Math. 16, Amer. Math. Soc., 1970, 61-65.

[00011] [GRW] J. E. Galé, T. J. Ransford and M. C. White, Weakly compact homomorphisms, Trans. Amer. Math. Soc. 331 (1992), 815-824. | Zbl 0761.46037

[00012] [Ga] T. Gamelin, Uniform Algebras, Chelsea, 1984.

[00013] [G] G. Garnett, Bounded Analytic Functions, Academic Press, 1981. | Zbl 0469.30024

[00014] [Go] H. Goldmann, Uniform Fréchet Algebras, North-Holland, 1990.

[00015] [HS] T. Hayden and T. Suffridge, Fixed points of holomorphic maps in Banach spaces, Proc. Amer. Math. Soc. 60 (1976), 95-105. | Zbl 0347.47032

[00016] [H] K. Hoffman, Analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. | Zbl 0192.48302

[00017] [K] H. Kamowitz, Compact operators of the form uCϕ, Pacific J. Math. 80 (1979), 205-211. | Zbl 0414.47016

[00018] [Ma] B. MacCluer, Spectra of compact composition operators on Hp(BN), Analysis 4 (1984), 87-103.

[00019] [MM] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679-2687. | Zbl 0826.47023

[00020] [M1] J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, ibid. 324 (1991), 867-887. | Zbl 0747.46038

[00021] [M2] J. Mujica, Complex Analysis in Banach Spaces, North-Holland, 1986.

[00022] [N] K. Ng, On a theorem of Dixmier, Math. Scand. 29 (1971), 279-280. | Zbl 0243.46023

[00023] [OW] S. Ohno and J. Wada, Compact homomorphisms on function algebras, Tokyo J. Math. 4 (1981), 105-112. | Zbl 0471.46035

[00024] [R] W. Rudin, Functional Analysis, McGraw-Hill, 1991. | Zbl 0867.46001

[00025] [Sa] D. Sarason, Weak Compactness of Holomorphic Composition Operators on H1, Lecture Notes in Math. 1511, Springer, Berlin, 1990.

[00026] [S] M. Schechter, On the spectra of operators on tensor products, J. Funct. Anal. 4 (1969), 95-99. | Zbl 0183.14102

[00027] [Ü] A. Ülger, Some results about the spectrum of commutative Banach algebras under the weak topology and applications, Monatsh. Math. 121 (1996), 353-379. | Zbl 0851.46036

[00028] [W] K. Włodarczyk, On the existence and uniqueness of fixed points for holomorphic maps in complex Banach spaces, Proc. Amer. Math. Soc. 112 (1991), 983-987. | Zbl 0744.47050