Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.
@article{bwmeta1.element.bwnjournal-article-smv123i3p217bwm, author = {Grzegorz \L ysik}, title = {A Phragm\'en-Lindel\"of type quasi-analyticity principle}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {217-234}, zbl = {0895.30020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p217bwm} }
Łysik, Grzegorz. A Phragmén-Lindelöf type quasi-analyticity principle. Studia Mathematica, Tome 122 (1997) pp. 217-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p217bwm/
[00000] [H] E. Hille, Analytic Function Theory, Vol. 2, Chelsea, New York, 1962. | Zbl 0102.29401
[00001] [K] H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105. | Zbl 0258.46039
[00002] [Ł1] G. Łysik, Generalized analytic functions and a strong quasi-analyticity principle, Dissertationes Math. 340 (1995), 195-200. | Zbl 0882.46018
[00003] [Ł2] G. Łysik, Laplace ultradistributions on a half line and a strong quasi-analyticity principle, Ann. Polon. Math. 63 (1996), 13-33. | Zbl 0843.46025
[00004] [M] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952. | Zbl 0048.05203
[00005] [R] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. 77 (1960), 41-121. | Zbl 0104.33403
[00006] [SZ] Z. Szmydt and B. Ziemian, The Laplace distributions on , submitted to J. Math. Sci. Univ. Tokyo.
[00007] [T] J. C. Tougeron, Gevrey expansions and applications, preprint, University of Toronto, 1991.
[00008] [W] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N.J., 1946. | Zbl 0060.24801
[00009] [Z] A. H. Zemanian, Generalized Integral Transformations, Interscience, 1969. | Zbl 0181.12701