Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves
Qian, Tao
Studia Mathematica, Tome 122 (1997), p. 195-216 / Harvested from The Polish Digital Mathematics Library

The paper presents a theory of Fourier transforms of bounded holomorphic functions defined in sectors. The theory is then used to study singular integral operators on star-shaped Lipschitz curves, which extends the result of Coifman-McIntosh-Meyer on the L2-boundedness of the Cauchy integral operator on Lipschitz curves. The operator theory has a counterpart in Fourier multiplier theory, as well as a counterpart in functional calculus of the differential operator 1/i d/dz on the curves.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216389
@article{bwmeta1.element.bwnjournal-article-smv123i3p195bwm,
     author = {Tao Qian},
     title = {Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {195-216},
     zbl = {0924.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p195bwm}
}
Qian, Tao. Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves. Studia Mathematica, Tome 122 (1997) pp. 195-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i3p195bwm/

[00000] [CM1] R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves, in: Lecture Notes in Math. 779, Springer, 1980, 104-122.

[00001] [CM2] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). | Zbl 0483.35082

[00002] [CMcM] R. Coifman, A. McIntosh et Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-387.

[00003] [D] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157-189. | Zbl 0537.42016

[00004] [DJS] G. David, J. L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56. | Zbl 0604.42014

[00005] [FJR] E. B. Fabes, M. Jodeit, Jr. and N. M. Rivière, Potential techniques for boundary value problems on C1 domains, Acta Math. 141 (1978), 165-186. | Zbl 0402.31009

[00006] [GQW] G. Gaudry, T. Qian and S.-L. Wang, Boundedness of singular integral operators with holomorphic kernels on star-shaped Lipschitz curves, Colloq. Math. 70 (1996), 133-150. | Zbl 0860.42013

[00007] [LMcQ] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana 10 (1994), 665-721. | Zbl 0817.42008

[00008] [LMcS] C. Li, A. McIntosh and S. Semmes, Convolution singular integral operators on Lipschitz surfaces, J. Amer. Math. Soc. 5 (1992), 455-481. | Zbl 0763.42009

[00009] [Mc] A. McIntosh, Operators which have an H-functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Canberra, 1986, 210-231.

[00010] [McQ1] A. McIntosh and T. Qian, Convolution singular integral operators on Lipschitz curves, in: Lecture Notes in Math. 1494, Springer, 1991, 142-162. | Zbl 0791.42012

[00011] [McQ2] A. McIntosh and T. Qian, Singular integrals along Lipschitz curves with holomorphic kernels, Approx. Theory Appl. 6 (1990), 40-57. | Zbl 0737.42017

[00012] [McQ3] A. McIntosh and T. Qian, Fourier multipliers on Lipschitz curves, Trans. Amer. Math. Soc. 333 (1992), 157-176. | Zbl 0766.42005

[00013] [Q1] T. Qian, Singular integrals on the m-torus and its Lipschitz perturbations, in: Clifford Algebras in Analysis and Related Topics, Stud. Adv. Math., CRC Press, Boca Raton, Fla., 1995, 94-108.

[00014] [Q2] T. Qian, Transference from Lipschitz graphs to periodic Lipschitz graphs, in: Miniconference on Analysis and Applications (Brisbane, 1993), Proc. Centre Math. Appl. Austral. Nat. Univ. 33, Canberra, 1994, 189-194.

[00015] [Q3] T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space, preprint.

[00016] [Q4] T. Qian, A holomorphic extension result, Complex Variables Theory Appl. 32 (1996), 59-77.

[00017] [Q5] T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space and generalizations to n, in: Proc. Conf. on Clifford and Quaternionic Analysis and Numerical Methods, June 1996, to appear.

[00018] [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501

[00019] [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.

[00020] [V] G. Verchota, Layer potentials and regularity for the Dirichlet problems for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572-611. | Zbl 0589.31005

[00021] [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, London and New York, 1968. | Zbl 0157.38204