Spectral sets
Koliha, J.
Studia Mathematica, Tome 122 (1997), p. 97-107 / Harvested from The Polish Digital Mathematics Library

The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216388
@article{bwmeta1.element.bwnjournal-article-smv123i2p97bwm,
     author = {J. Koliha},
     title = {Spectral sets},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {97-107},
     zbl = {0877.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p97bwm}
}
Koliha, J. Spectral sets. Studia Mathematica, Tome 122 (1997) pp. 97-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p97bwm/

[00000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039

[00001] [2] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978. | Zbl 0384.47001

[00002] [3] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185

[00003] [4] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1957.

[00004] [5] J. E. Galé, Weakly compact homomorphisms and semigroups in Banach algebras, J. London Math. Soc. 45 (1992), 113-125. | Zbl 0699.46024

[00005] [6] H. Heuser, Functional Analysis, Wiley, New York, 1982.

[00006] [7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland Math. Stud. 9, North-Holland, Amsterdam, 1974. | Zbl 0288.46043

[00007] [8] J. J. Koliha, Convergence of an operator series, Aequationes Math. 16 (1977), 31-35. | Zbl 0376.47011

[00008] [9] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424. | Zbl 0864.46028

[00009] [10] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. | Zbl 0657.47038

[00010] [11] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.

[00011] [12] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, ibid. 117 (1993), 715-719. | Zbl 0780.47019

[00012] [13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. | Zbl 0501.46003