The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.
@article{bwmeta1.element.bwnjournal-article-smv123i2p97bwm, author = {J. Koliha}, title = {Spectral sets}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {97-107}, zbl = {0877.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p97bwm} }
Koliha, J. Spectral sets. Studia Mathematica, Tome 122 (1997) pp. 97-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p97bwm/
[00000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039
[00001] [2] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978. | Zbl 0384.47001
[00002] [3] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185
[00003] [4] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1957.
[00004] [5] J. E. Galé, Weakly compact homomorphisms and semigroups in Banach algebras, J. London Math. Soc. 45 (1992), 113-125. | Zbl 0699.46024
[00005] [6] H. Heuser, Functional Analysis, Wiley, New York, 1982.
[00006] [7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland Math. Stud. 9, North-Holland, Amsterdam, 1974. | Zbl 0288.46043
[00007] [8] J. J. Koliha, Convergence of an operator series, Aequationes Math. 16 (1977), 31-35. | Zbl 0376.47011
[00008] [9] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424. | Zbl 0864.46028
[00009] [10] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. | Zbl 0657.47038
[00010] [11] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
[00011] [12] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, ibid. 117 (1993), 715-719. | Zbl 0780.47019
[00012] [13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. | Zbl 0501.46003