On a theorem of Gelfand and its local generalizations
Drissi, Driss
Studia Mathematica, Tome 122 (1997), p. 185-194 / Harvested from The Polish Digital Mathematics Library

In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, T1,...,Tm, on a Banach space X.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216387
@article{bwmeta1.element.bwnjournal-article-smv123i2p185bwm,
     author = {Driss Drissi},
     title = {On a theorem of Gelfand and its local generalizations},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {185-194},
     zbl = {0894.47018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p185bwm}
}
Drissi, Driss. On a theorem of Gelfand and its local generalizations. Studia Mathematica, Tome 122 (1997) pp. 185-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p185bwm/

[00000] [1] Allan G. R.: Sums of idempotents and a lemma of N. J. Kalton, Studia Math. 121 (1996), 185-192. | Zbl 0862.46029

[00001] [2] Allan G. R. and Ransford T. J.: Power-dominated elements in a Banach algebra, ibid. 94 (1989), 63-79. | Zbl 0705.46021

[00002] [3] Atzmon A.: Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144 (1980), 27-63. | Zbl 0449.47007

[00003] [4] Aupetit B. and Drissi D.: Some spectral inequalities involving generalized scalar operators, Studia Math. 109 (1994), 51-66. | Zbl 0829.47002

[00004] [5] Aupetit B. and Drissi D.: Local spectrum theory and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579. | Zbl 0861.47003

[00005] [6] Batty C. J. K.: Asymptotic behaviour of semigroups of operators, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 35-52. | Zbl 0818.47034

[00006] [7] Bernau S. J. and Huijsmans C. B.: On the positivity of the unit element in a normed lattice ordered algebra, Studia Math. 97 (1990), 143-149. | Zbl 0782.47031

[00007] [8] Boas R. P.: Entire Functions, Academic Press, New York, 1954. | Zbl 0058.30201

[00008] [9] Bohnenblust H. F. and Karlin S.: Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229. | Zbl 0067.35002

[00009] [10] Brunel A. et Émilion R.: Sur les opérateurs positifs à moyennes bornées, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984),103-106. | Zbl 0582.47038

[00010] [11] Colojoară I. and Foiaş C.: Theory of Generalized Spectral Operators, Gordon and Breach, 1968.

[00011] [12] Émilion R.: Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1-14.

[00012] [13] Esterle J.: Quasimultipliers, representations of H, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity (Long Beach, Calif., 1981), Lecture Notes in Math. 975, Springer, 1983, 66-162.

[00013] [14] Gelfand I.: Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. | Zbl 67.0407.02

[00014] [15] Hille E.: On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60. | Zbl 0061.25305

[00015] [16] Hille E. and Phillips R. S.: Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.

[00016] [17] Katznelson Y. and Tzafriri L.: On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005

[00017] [18] Laursen K. B. and Mbekhta M.: Operators with finite chain length, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. | Zbl 0849.47008

[00018] [19] Levin B. Ja.: Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, 1964.

[00019] [20] Lumer G.: Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75-85. | Zbl 0168.12103

[00020] [21] Lumer G.: Spectral operators, Bounded groups and a theorem of Gelfand, Rev. Un. Mat. Argentina 25 (1971), 239-245. | Zbl 0324.46047

[00021] [22] Lumer G. and Phillips R. S.: Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. | Zbl 0101.09503

[00022] [23] Lyubich Yu. and Zemánek J.: Precompactness in the uniform ergodic theory, Studia Math. 112 (1994), 89-97. | Zbl 0817.47014

[00023] [24] Mbekhta M. and Vasilescu F.-H.: Uniformly ergodic multioperators, Trans. Amer. Math. Soc. 347 (1995), 1847-1854. | Zbl 0837.47007

[00024] [25] Mbekhta M. and Zemánek J.: Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.

[00025] [26] Pedersen T. V.: Norms of powers in Banach algebras, Bull. London Math. Soc. 27 (1995), 305-316. | Zbl 0835.46045

[00026] [27] Pytlik T.: Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51 (1987), 287-294. | Zbl 0632.46043

[00027] [28] Shilov G. E.: On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72 (1950), 641-644 (in Russian). | Zbl 0039.33601

[00028] [29] Sinclair A. M.: The norm of a hermitian element in a Banach Algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. | Zbl 0242.46035

[00029] [30] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424. | Zbl 0175.43902

[00030] [31] Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024. | Zbl 0781.47003

[00031] [32] Zemánek J.: Sur les itérations des opérateurs, Publ. Math. Univ. Pierre et Marie Curie, Séminaire d'Initiation à l'Analyse, 1994.

[00032] [33] Zemánek J.: Sur les itérations des opérateurs, On the Gelfand-Hille theorems, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. | Zbl 0822.47005